- 著者
-
田中 聡一
三木 恒久
関 雅子
重松 一典
金山 公三
- 出版者
- 公益社団法人 日本材料学会
- 雑誌
- 材料 (ISSN:05145163)
- 巻号頁・発行日
- vol.64, no.5, pp.369-374, 2015-05-15 (Released:2015-05-20)
- 参考文献数
- 6
- 被引用文献数
-
6
6
To control the amount of solute in cell walls of solution impregnated wood using the conditioning process, the mechanisms of solute diffusion into the cell walls and of solvent evaporation from wood under the process were verified. The effect of relative humidity (RH) on temporal variability of swelling, shrinkage, and mass of wood impregnated with an aqueous solution of polyethylene glycol (PEG1540) was examined. The impregnated wood specimen swelled under the conditioning at the RH over 75%. The specimen was indicated to swell when the amount of the PEG polymers in the cell walls increase in this RH range. On the basis of this indication, the temporal variability of increasing rate of the polymers in the cell walls and of evaporating rate of water from the specimen under the conditioning was well explained by the mechanisms of the solute diffusion and the solvent evaporation, respectively. In the RH range, the increasing amount of the polymers in the cell walls increased with the evaporating amount of the water, which increased with the decrease in the RH. These results were supported by the mechanisms of the solute diffusion and the solvent evaporation, respectively. The diffusion mechanism also supported the effect of the history of the RH on the polymer amount in the cell walls throughout the conditioning and subsequent drying in a vacuum. It was concluded from these findings that the solute diffusion into cell walls is able to be controlled by the surrounding vapor pressure of solvent when the polymers (PEG1540) and water are employed as the solute and solvent, respectively.