著者
長谷川 雄太 青木 尊之 小林 宏充 白﨑 啓太
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.85, no.870, pp.18-00441, 2019 (Released:2019-02-25)
参考文献数
18

We implement and perform large-scale LES analysis for running groups of cyclists. The mesh-refined lattice Boltzmann method (LBM) and coherent-structure Smagorinsky model (CSM) are adopted for the simulations to achieve a high performance computing on the recent GPU supercomputer. In the simulation with 16 cyclists, the mesh spacing around cyclists is 4 mm, and the total number of the mesh is up to 8.1×108 and the number of GPUs utilized is up to 64. Each calculation took 4 or 5 days for the 8~11 seconds of physical duration. The flow around 16 cyclists in various arrangement is calculated, and the results show that the in-line arrangement is more effective than the rhomboid arrangement in the viewpoint of the total aerodynamic drag of the group; however, a specific person in rhomboid arrangement can obtain larger drag reduction and save the endurance. Results on two groups also suggest that the frontal group in rhomboid arrangement will be exploited as the wind protection of the backward groups.
著者
長谷川 雄太 青木 尊之 小林 宏充 白﨑 啓太
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
pp.18-00441, (Released:2019-02-07)
参考文献数
18

We implement and perform large-scale LES analysis for running groups of cyclists. The mesh-refined lattice Boltzmann method (LBM) and coherent-structure Smagorinsky model (CSM) are adopted for the simulations to achieve a high performance computing on the recent GPU supercomputer. In the simulation with 16 cyclists, the mesh spacing around cyclists is 4 mm, and the total number of the mesh is up to 8.1×108 and the number of GPUs utilized is up to 64. Each calculation took 4 or 5 days for the 8~11 seconds of physical duration. The flow around 16 cyclists in various arrangement is calculated, and the results show that the in-line arrangement is more effective than the rhomboid arrangement in the viewpoint of the total aerodynamic drag of the group; however, a specific person in rhomboid arrangement can obtain larger drag reduction and save the endurance. Results on two groups also suggest that the frontal group in rhomboid arrangement will be exploited as the wind protection of the backward groups.
著者
渡辺 勢也 青木 尊之 長谷川 雄太 河原 淳 橋本 博公
出版者
日本混相流学会
雑誌
混相流 (ISSN:09142843)
巻号頁・発行日
vol.33, no.1, pp.55-62, 2019-03-15 (Released:2019-04-08)
参考文献数
21
被引用文献数
1

Numerical simulations are powerful tools to study tsunami impacts on building structures. We have developed a CFD code for free-surface flows interacting with floating debris by using Lattice Boltzmann Method (LBM) and Discrete Element Method (DEM). Both methods are suitable for GPU computing and large-scale simulations because they are explicit time-integration schemes. In order to improve the accuracy and the stability of flow computation, the cumulant LBM model has been employed and coupled with the conservative Allen-Cahn equation for the purpose of free-surface capturing. A moving boundary approach based on the interpolated bounce-back scheme is utilized at liquid-solid interfaces. Rigid body dynamics of floating debris is computed by using DEM. A model constructed by multiple small spheres represents complex shapes of debris. We measure the weak scalability on multiple GPUs of the TSUBAME3.0 supercomputer, and the code achieved 83.4% parallel efficiency when scaled 16 to 256 GPUs. As a test case, we demonstrate a tsunami flow with driftwoods using 200×600×3000 lattice nodes and 24 GPUs Tesla P100, and the simulation has completed within 24 hours. The impact force of the driftwoods acting on the wall is about 15 times larger than only water. It shows that effects of driftwoods are important to evaluate the tsunami damage on building structures.