- 著者
-
宮縁 育夫
飯塚 義之
大倉 敬宏
- 出版者
- 特定非営利活動法人 日本火山学会
- 雑誌
- 火山 (ISSN:04534360)
- 巻号頁・発行日
- vol.67, no.4, pp.441-452, 2022-12-31 (Released:2023-01-30)
- 参考文献数
- 12
After the July 2019-June 2020 small-scale magmatic activity, surface unrest of the Nakadake first crater, which is located at the center of Aso caldera, SW Japan, had been mostly calm for fourteen months, and a lake had reformed inside the crater by late-August 2021. An eruption producing ballistic clasts and a tephra fall deposit occurred within the first crater of Nakadake at 04:44 on October 14, 2021. A large number of ballistic clasts were distributed from the west-northwestern rim of the Nakadake first crater to the southern rim of the second crater, with ballistics also reaching at least 450 m south of the center of the first crater. The largest clast (70×32×31 cm) was ejected a distance of 300 m SW of the center of the first crater. Several impact craters, which were<1 m in diameter, were observed in the surface ash layer at the crater rim. The ballistic clasts were dominated by basaltic-andesite lithic fragments of lavas and pyroclastic rocks, and were not thought to derive from a newly ascending magma. The tephra fall deposit was distributed to the southeast, extending approximately 30 km from the source crater. At the crater rim, the fall deposits were composed mainly of sand-size particles with small amounts of lapilli (<17 %), and were aggregated at sizes of a few mm to 1 cm. The aggregated muddy ash (a few millimeters in diameter) adhered to plant leaves and the surface of man-made constructions in the southeastern part of Aso caldera (4-10 km), indicating that the rising plume contained large amounts of condensed water vapor. Based on the isomass map, the total discharged mass of the October 14, 2021 eruption was calculated at approximately 2500 tons. Gray to white lithic grains (40-50 %) were dominant in the tephra deposits (0.125-0.25 mm fraction), while black to brown glass shards (8-16 %) were also observed. Although a very small proportion of glass particles appeared to be fresh, most of glass shards showed varying degrees of alteration based on microscope observation and electron micro-probe analysis. These combined lines of evidence suggest that the October 14, 2021 eruption of the first crater at Nakadake was probably a purely phreatic eruption.