著者
黒田 浩司 岡井 文彦 高野 和朗
出版者
一般社団法人 電気学会
雑誌
電気学会論文誌D(産業応用部門誌) (ISSN:09136339)
巻号頁・発行日
vol.125, no.3, pp.286-292, 2005 (Released:2005-06-01)
参考文献数
11
被引用文献数
1 2

The 76GHz millimeter wave radar has been developed for automotive application such as ACC (Adaptive Cruise Control) and CWS (Collision Warning System). The radar is FSK (Frequency Shift Keying) monopulse type. The radar transmits 2 frequencies in time-duplex manner, and measures distance and relative speed of targets. The monopulse feature detects the azimuth angle of targets without a scanning mechanism. Conventionally a radar unit is aimed mechanically, although self-aiming capability, to detect and correct the aiming angle error automatically, has been required. The new algorithm, which estimates the aiming angle error and vehicle speed sensor error simultaneously, has been proposed and tested. The algorithm is based on the relationship of relative speed and azimuth angle of stationary objects, and the least squares method is used for calculation. The algorithm is applied to measured data of the millimeter wave radar, resulting in aiming angle estimation error of less than 0.6 degree.
著者
黒田 浩司 岡井 文彦 高野 和朗
出版者
一般社団法人 電気学会
雑誌
電気学会論文誌. D, 産業応用部門誌 = The transactions of the Institute of Electrical Engineers of Japan. D, A publication of Industry Applications Society (ISSN:09136339)
巻号頁・発行日
vol.125, no.3, pp.286-292, 2005-03-01
参考文献数
9
被引用文献数
3 2

The 76GHz millimeter wave radar has been developed for automotive application such as ACC (Adaptive Cruise Control) and CWS (Collision Warning System). The radar is FSK (Frequency Shift Keying) monopulse type. The radar transmits 2 frequencies in time-duplex manner, and measures distance and relative speed of targets. The monopulse feature detects the azimuth angle of targets without a scanning mechanism. Conventionally a radar unit is aimed mechanically, although self-aiming capability, to detect and correct the aiming angle error automatically, has been required. The new algorithm, which estimates the aiming angle error and vehicle speed sensor error simultaneously, has been proposed and tested. The algorithm is based on the relationship of relative speed and azimuth angle of stationary objects, and the least squares method is used for calculation. The algorithm is applied to measured data of the millimeter wave radar, resulting in aiming angle estimation error of less than 0.6 degree.