著者
UMEZAWA Taku ANDREWS Stephen J. SAITO Takuya
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-007, (Released:2019-11-10)
被引用文献数
1

Although methane plays an important role in climate change and atmospheric chemistry, its global budget remains quantitatively uncertain due mainly to a wide variety of source types. The stable carbon isotope ratio of atmospheric methane (δ13C-CH4) is useful for separating contributions of different source categories, but due to the complex and laborious analysis, limited measurement data exists. We present a new system for δ13C-CH4 measurement, optimized for the automated analysis of air samples. Although the system is designed in principle similarly to those in previous studies, we successfully set up the system with no use of cryogens (e.g. liquid nitrogen) and attained reproducibility sufficient to analyze atmospheric variations (∼ 0.1 ‰). We performed automated continuous measurements of ambient air outside our laboratory at about hourly intervals for 2 months, which characterized imprint of local methane sources well. Future measurement operation for flask air samples from existing atmospheric monitoring programs will provide a large number of atmospheric δ13C-CH4 data.