著者
Mitsuhiro Shibata Atsushi Iwasawa Masato Yayota
出版者
Japan Poultry Science Association
雑誌
The Journal of Poultry Science (ISSN:13467395)
巻号頁・発行日
vol.60, no.2, pp.2023020, 2023 (Released:2023-08-09)
参考文献数
62
被引用文献数
1

Yolk sac membranes of layer eggs were collected daily (n = 7–9) from day three of incubation to day three post-hatch, and mRNA expression and activities were quantified for key gluconeogenesis enzymes (glucose-6-phosphatase, fructose-1,6-bisphosphatase, cytosolic and mitochondrial phosphoenolpyruvate carboxykinases, and pyruvate carboxylase). Lactate, triglycerides, non-esterified fatty acids, glycogen, and glucose in the yolk sac membrane, and blood glucose levels were also measured. The mRNA expression and activity were detected for all enzymes. Differences in expression levels and enzyme activities seemed to reflect the embryo’s developmental environment and physiological demands at different developmental stages. During the first week to the mid-second week of incubation, the expression and activity of gluconeogenic enzymes and lactate concentrations were high, suggesting an active period of gluconeogenesis from lactate, reflecting possible hypoxia in the embryo before completed formation of the chorioallantoic capillaries. From the mid-second week to mid-third week, when embryos were in an aerobic state, the triglyceride and non-esterified fatty acid contents increased in the yolk sac. Triglycerides from yolk lipids are typically hydrolyzed to produce non-esterified fatty acids as an energy source, whereas the glycerol skeleton is used for gluconeogenesis. In the late third week, when embryos were considered to re-enter an anaerobic state, the mRNA expression and enzyme activity of only glucose-6-phosphatase were high and the amount of glycogen in the yolk sac was reduced. Therefore, it is suggested that gluconeogenesis activity is low during this period, and the carbohydrates stored in the yolk sac membrane are secreted into the blood as energy for hatching. This study confirmed the role of the yolk sac membrane as a vital gluconeogenic organ during chicken egg incubation.
著者
Takafumi SUZUKI Naohito NISHII Satoshi TAKASHIMA Tatsuya MATSUBARA Atsushi IWASAWA Hirofumi TAKEUCHI Kohei TAHARA Tatsuyuki HACHISU Hitoshi KITAGAWA
出版者
公益社団法人 日本獣医学会
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.15-0131, (Released:2015-06-09)
被引用文献数
1

Polyclonal immunoglobulin (Ig) G autoantibodies against insulin have been identified in sera of healthy cats. We purified and fractionated insulin-binding IgGs from cat sera by affinity chromatography and analyzed affinity of insulin-binding IgGs for insulin and their epitopes. Following the passing of fraction A, which did not bind to insulin, insulin-binding IgGs were eluted into two fractions, B and C, by affinity chromatography using a column fixed with bovine insulin. Dissociation constant (KD) values between insulin-binding IgGs and insulin, determined by surface plasmon resonance analysis (Biacore™system), were 1.64e−4 M for fraction B (low affinity IgGs) and 2e−5 M for fraction C (high affinity IgGs). Epitope analysis was conducted using 16 peptide fragments synthesized in concord with the amino acid sequence of feline insulin by an enzyme-linked immunosorbent assay. Fractions B and C showed higher absorbance (affinity) of the peptide fragment of 10 amino acid residues at the carboxyl-terminal of the B chain (peptide No. 19), followed by peptide fragments of 6 to 15 amino acid residues of the B chain (peptide No. 8). Fraction C showed a higher absorbance to 7 to 16 amino acid residues of the B chain (peptide No. 5) compared with the absorbance of fraction B. Polyclonal insulin-binding IgGs may form a macromolecule complex with insulin through the multiple affinity sites of IgG molecules. Feline insulin-binding IgGs are multifocal and may be composed of multiple IgG components and insulin.