著者
Ma Yitao Miura Sadahiko Honjo Hiroaki Ikeda Shoji Hanyu Takahiro Ohno Hideo Endoh Tetsuo
出版者
Institute of Physics
雑誌
Jpn. J. Appl. Phys. (ISSN:00214922)
巻号頁・発行日
vol.55, no.4, 2016-03-29
被引用文献数
13

A novel associative processor using magnetic tunnel junction (MTJ)-based nonvolatile memories has been proposed and fabricated under a 90 nm CMOS/70 nm perpendicular-MTJ (p-MTJ) hybrid process for achieving the exceptionally low-power performance of image pattern recognition. A four-transistor 2-MTJ (4T-2MTJ) spin transfer torque magnetoresistive random access memory was adopted to completely eliminate the standby power. A self-directed intelligent power-gating (IPG) scheme specialized for this associative processor is employed to optimize the operation power by only autonomously activating currently accessed memory cells. The operations of a prototype chip at 20 MHz are demonstrated by measurement. The proposed processor can successfully carry out single texture pattern matching within 6.5 µs using 128-dimension bag-of-feature patterns, and the measured average operation power of the entire processor core is only 600 µW. Compared with the twin chip designed with 6T static random access memory, 91.2% power reductions are achieved. More than 88.0% power reductions are obtained compared with the latest associative memories. The further power performance analysis is discussed in detail, which verifies the special superiority of the proposed processor in power consumption for large-capacity memory-based VLSI systems.
著者
HANYU Takahiro KAMEYAMA Michitaka
出版者
一般社団法人電子情報通信学会
雑誌
IEICE transactions on electronics (ISSN:09168524)
巻号頁・発行日
vol.82, no.9, pp.1662-1668, 1999-09-25
被引用文献数
12

A new logic-in-memory VLSI architecture based on multiple-valued floating-gate-MOS pass-transistor logic is proposed to solve the communication bottleneck between memory and logic modules. Multiple-valued stored data are represented by the threshold voltage of a floating-gate MOS transistor, so that a single floating-gate MOS transistor is effectively employed to merge multiple-valued threshold-literal and pass-switch functions. As an application, a four-valued logicin-memory VLSI for high-speed pattern recognition is also presented. The proposed VLSI detects a stored reference word with the minimum Manhattan distance between a 16-bit input word and 16-bit stored reference words. The effective chip area, the switching delay and the power dissipation of a new four-valued full adder, which is a key component of the proposed logic-in-memory VLSI, are reduced to about 33 percent, 67 percent and 24 percent, respectively, in comparison with those of the corresponding binary CMOS implementation under a 0.5-μm flash EEPROM, technology.