著者
Yuki Tamura Hideo Hatta
出版者
一般社団法人日本体力医学会
雑誌
The Journal of Physical Fitness and Sports Medicine (ISSN:21868131)
巻号頁・発行日
vol.6, no.3, pp.151-158, 2017-05-25 (Released:2017-05-17)
参考文献数
50
被引用文献数
8

Heat stress treatment is a classic physical therapy, which is employed in the orthopedic field. In the field of physical fitness/sports science, morphological changes of skeletal muscle by heat stress have been well studied. In recent years, energy metabolic adaptations by heat stress have also been actively studied. In this review, we provide an overview of recent findings on heat stress-induced mitochondrial adaptations in skeletal muscles, and further discuss our unpublished data and recent findings in related research fields. First, we summarized heat stress-induced positive regulation of mitochondrial content and its underlying molecular mechanisms from perspectives of mitochondrial biogenesis and degradation. Consequently, we reviewed beneficial effects of heat stress on mitochondrial health in disused and aged muscles, focusing on mitochondrial stress response at the organelle level (mitochondrial selective autophagy; mitophagy) and molecular level (mitochondrial unfolded protein response). Finally, we overviewed future directions to better understand heat stress-induced mitochondrial adaptations in skeletal muscle.
著者
Naoya Takei Kenya Takahashi Katsuyuki Kakinoki Hideo Hatta
出版者
The Japanese Society of Physical Fitness and Sports Medicine
雑誌
The Journal of Physical Fitness and Sports Medicine (ISSN:21868131)
巻号頁・発行日
vol.7, no.5, pp.253-259, 2018-09-25 (Released:2018-09-25)
参考文献数
26
被引用文献数
1

Over the past few decades, several studies have been conducted on the relationships between peak blood lactate concentration (PBLC) and exercise performance. However, it is still controversial whether PBLC has a correlation with exercise performance, and if it can be a reliable indicator for energy metabolism during short-term high-intensity exercise. Thus, the purpose of the present study is to establish a new reliable indicator. PBLC isn’t able to reflect individual differences in kinetics of post-exercise blood lactate concentration (e.g. different time point of PBLC). Thus, to reflect the individual differences, we focused on the rate of increase in post-exercise blood lactate concentration (RIBLC). Twenty-two male university track athletes were divided into a sprinter group (S: n = 14) and middle- to long-distance runner group (ML: n = 8). 400-m (meter) time trials and blood samplings were conducted to measure exercise performance (average running velocity) and blood lactate concentration. In the present study, PBLC had no significant correlations with average running velocity in both S and ML. The present study supports previous studies that reported no correlations between PBLC and exercise performance. In contrast, significant correlations between RIBLC and average running velocity were observed in both S and ML (r = 0.69, p < 0.001 and r = 0.93, p < 0.01, respectively). RIBLC was significantly higher in ML than S (p < 0.05). It is assumed that RIBLC indicates lactate transport capacity and plays an important role in 400-m sprinting. Based on these results, RIBLC could be a new indicator for energy metabolism during short-term high-intensity exercise.
著者
Yumiko Takahashi Yutaka Matsunaga Yuki Tamura Eiki Urushibata Shin Terada Hideo Hatta
出版者
The Japanese Society of Physical Fitness and Sports Medicine
雑誌
The Journal of Physical Fitness and Sports Medicine (ISSN:21868131)
巻号頁・発行日
vol.3, no.5, pp.531-537, 2014-11-25 (Released:2014-12-05)
参考文献数
26
被引用文献数
4 6

Previous studies suggested that taurine (2-aminoethanesulfonic acid) administration enhances glucose uptake, one of the rate-limiting factors for glycogen synthesis. In this study, we investigated the effects of post-exercise taurine administration on glycogen repletion in skeletal muscle in ICR mice. In experiment 1, we orally administered either taurine (0.5 mg/g body weight) solution or physiological saline immediately after treadmill running at 25 m/min for 90 min. The serum free fatty acid (FFA) concentration at 60 min after the exercise was significantly higher in the taurine-treated group compared with the control group (p < 0.05). At 120 min after the exercise, the tibialis anterior muscle glycogen concentration in the taurine-treated group was significantly higher than that in the control group (p < 0.05). In experiment 2, we orally administered either glucose (1 mg/g body weight) solution or glucose solution containing taurine immediately after and at 60 min after the exercise. The area under the curve (AUC) for blood glucose concentration from 0 to 60 min after the exercise was significantly smaller in the taurine-treated group compared with the control group (p < 0.01). Our results show that post-exercise taurine administration enhances glycogen repletion in skeletal muscle. Higher skeletal muscle glycogen concentration by taurine administration may be partly due to the acceleration of glucose uptake. In addition, as the elevation of blood FFA level leads to an increase in fat oxidation, it is possible that a higher serum FFA concentration by taurine treatment is related to the sparing of carbohydrate for glycogen repletion.
著者
Yumiko TAKAHASHI Yutaka MATSUNAGA Yuki TAMURA Shin TERADA Hideo HATTA
出版者
Center for Academic Publications Japan
雑誌
Journal of Nutritional Science and Vitaminology (ISSN:03014800)
巻号頁・発行日
vol.63, no.5, pp.323-330, 2017 (Released:2017-12-08)
参考文献数
47
被引用文献数
4

Previous studies have shown that the short-term intake of a high-fat diet (HFD) impairs glucose metabolism. In this study, we investigated the influences of pre-exercise HFD intake for 3 d on post-exercise glycogen repletion in skeletal muscle in ICR mice. Mice received either an HFD (57% kcal from fat, 23% kcal from carbohydrate; HFD group) or standard laboratory chow (13% kcal from fat, 60% kcal from carbohydrate; Con group) for 3 d before exercise. Mice performed treadmill running at 25 m/min for 60 min and were orally administered a glucose (2 mg/g body weight) solution immediately after and at 60 min after exercise. A negative main effect of pre-exercise HFD intake was observed for skeletal muscle glycogen concentration from the pre-exercise phase to 120 min of post-exercise recovery (p<0.01). Blood glucose concentration in the HFD group was significantly higher than in the Con group at 120 min after exercise (p<0.01). No significant difference was observed in plasma insulin concentration. There were no significant between-group differences in the phosphorylation state of Akt Thr308, AMPK Thr172, AS160 Thr642, or glycogen synthase Ser641 or in glucose transporter 4 protein levels during post-exercise recovery. Our results suggest that the intake of a pre-exercise HFD for 3 d affects post-exercise glycogen repletion in skeletal muscle without impairing the insulin signaling cascade.
著者
Daisuke Hoshino Yu Kitaoka Hideo Hatta
出版者
一般社団法人日本体力医学会
雑誌
The Journal of Physical Fitness and Sports Medicine (ISSN:21868131)
巻号頁・発行日
vol.5, no.1, pp.13-23, 2016-03-25 (Released:2016-03-18)
参考文献数
87
被引用文献数
1 13

High-intensity interval training (HIIT) consists of repeated short bursts of high-intensity exercise and rest. Here we review recent work focusing on the metabolic adaptations to HIIT, especially in oxidative capacity and substrate availability in skeletal muscle. In this review, HIIT is defined as chronic training, for at least 2 weeks, involving repeated short-duration high-intensity exercise at >85% VO2 max, followed by complete rest or active rest, for any given duration of exercise and rest. First, we describe the effects of HIIT on muscle substrate oxidative metabolism, specifically in terms of mitochondria and substrate transporters. HIIT changes muscle mitochondrial content, function and dynamics. HIIT increases the protein content of transporters of glucose, lactate and fatty acids in skeletal muscle. These adaptations of mitochondria and transporter proteins improve oxidative capacity and substrate availability in skeletal muscle. Second, we introduce a potential mechanism of HIIT-induced adaptations in skeletal muscle, focusing on mitochondrial biogenesis. It is well known that a mechanism of mitochondrial biogenesis involves PGC-1alpha protein and its upstream signaling pathways including Ca2+/calmodulin-dependent protein kinase, AMP-activated protein kinase and mitogen-activated protein kinase p38. Given that mitochondrial biogenesis occurs in an exercise-intensity-dependent manner, mobilization of fast-twitch fibers and lactate accumulation are important. Finally, we discuss the future direction of HIIT research, involving systems biology approaches such as omics technologies and mathematical modeling, which may overcome current limitations and accelerate our understanding of mechanisms of HIIT-induced adaptations.
著者
Yu Kitaoka Yukari Endo Kazutaka Mukai Hiroko Aida Atsushi Hiraga Hideo Hatta
出版者
一般社団法人日本体力医学会
雑誌
The Journal of Physical Fitness and Sports Medicine (ISSN:21868131)
巻号頁・発行日
vol.3, no.4, pp.451-456, 2014-09-25 (Released:2014-10-02)
参考文献数
33
被引用文献数
2 11

We examined the muscle glycogen, and muscle and plasma lactate concentrations before and after 1 and 2 min of intensive exercise at 120% VO2max, and examined possible relationships between these indexes and protein levels of monocarboxylate transporters (MCT) in the gluteus medius muscle of Thoroughbred horses. The horses underwent 1 and 2 min of intensive exercise at the speed of 120% maximal oxygen consumption (VO2max) on a treadmill. The plasma lactate concentration increased after 1-min exercise (11.7 ± 0.8 mmol/L) and 2-min exercise (23.1 ± 1.1 mmol/L). The muscle lactate concentration increased after 1-min exercise (17.3 ± 2.1 mmol/kg) and 2-min exercise (23.6 ± 2.0 mmol/kg). While there was no significant difference in lactate accumulation in the plasma between the first minute and the second minute, lactate accumulation in muscle significantly decreased in the second minute compared with the first minute. The muscle glycogen level decreased after both 1- (42%) and 2-min (41%) exercise, but there was no difference between the levels after 1- and 2-min exercise. The muscle lactate concentration after 2-min intensive exercise positively correlated with the protein level of MCT4 (r = 0.78, p < 0.01). These results suggest that glycogen breakdown occurs in the first minute of intensive exercise, and Thoroughbred horses with higher muscle lactate production during exercise are endowed with higher expression of MCT4, that facilitates the efflux of lactate from muscle cells.
著者
Hiroyuki MASUDA Haruka MATSUMAE Tsuyoshi MASUDA Hideo HATTA
出版者
Center for Academic Publications Japan
雑誌
Journal of Nutritional Science and Vitaminology (ISSN:03014800)
巻号頁・発行日
vol.56, no.1, pp.9-12, 2010 (Released:2010-03-31)
参考文献数
17
被引用文献数
2 2

Thiamin (vitamin B1) is known to activate carbohydrate metabolism in part through activation of pyruvate dehydrogenase. The purpose of this study was to investigate the effect of thiamin tetrahydrofurfuryl disulfide (TTFD), a thiamin derivative, on utilization of exogenous glucose by measuring oxidation of 13C-glucose at rest and during prolonged exercise in mice under normal dietary conditions. Mice orally ingested TTFD (0.1 mg/g BW [body weight]) and 13C-glucose (0.8 mg/g BW) or 13C-lactate (0.1 mg/g BW) plus glucose (0.8 mg/g BW) at rest or before endurance running. The average percent of 13C atoms in total 12C+13C (13C atom%) in expired air after ingestion of 13C-glucose at rest was significantly lower in the TTFD group than in the control group. No significant difference was found in 13C atom% in expired air after ingestion of 13C-glucose and prolonged exercise. In addition, no significant effect of TTFD was found in expired 13C atom% after ingestion of 13C-lactate plus glucose at rest. TTFD also had no effect on concentrations of muscle or liver glycogen at rest. These results suggest that TTFD, which is a thiamin derivative, decreases oxidation of exogenous glucose at rest, but not during exercise.