著者
Akiyoshi Wada Johnny C. L. Chan
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.17A-005, (Released:2021-01-11)
被引用文献数
9

In the 2019 tropical cyclone season in the western North Pacific, Typhoons FAXAI and HAGIBIS made landfall in Japan while keeping the intensity, resulting in serious disasters. This study addresses the influences of an increasing trend and variations in the upper ocean heat content above 26°C (tropical cyclone heat potential: TCHP) from January 1982 to June 2020 on FAXAI and HAGIBIS. TCHP underneath FAXAI and HAGIBIS in 2019 was higher than the climatological mean except for a part of mature phase of HAGIBIS due to HAGIBIS-induced sea surface cooling. TCHP significantly increased with the interannual oceanic variations (IOVs) in the subtropical (15-20°N, 140-150°E) and midlatitude (30-35°N, 130-140°E) areas where FAXAI and HAGIBIS intensified or kept the intensity. From an empirical orthogonal function (EOF) analysis of TCHP, we demonstrate that the leading three EOF modes of TCHP explains approximately 76.8% of total variance, but the increase in TCHP along the tracks of FAXAI and HAGIBIS particularly in the early intensification of HAGIBIS cannot be explained only by the IOVs included in the leading three EOF modes but rather by the warming trend irrespective of the IOVs.
著者
Akiyoshi Wada Johnny C. L. Chan
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.17A, no.Special_Edition, pp.29-32, 2021 (Released:2021-03-18)
参考文献数
18
被引用文献数
9

In the 2019 tropical cyclone season in the western North Pacific, Typhoons FAXAI and HAGIBIS made landfall in Japan while keeping the intensity, resulting in serious disasters. This study addresses the influences of an increasing trend and variations in the upper ocean heat content above 26°C (tropical cyclone heat potential: TCHP) from January 1982 to June 2020 on FAXAI and HAGIBIS. TCHP underneath FAXAI and HAGIBIS in 2019 was higher than the climatological mean except for a part of mature phase of HAGIBIS due to HAGIBIS-induced sea surface cooling. TCHP significantly increased with the interannual oceanic variations (IOVs) in the subtropical (15°N-20°N, 140°E-150°E) and midlatitude (30°N-35°N, 130°E-140°E) areas where FAXAI and HAGIBIS intensified or kept the intensity. From an empirical orthogonal function (EOF) analysis of TCHP, we demonstrate that the leading three EOF modes of TCHP explain approximately 76.8% of total variance, but the increase in TCHP along the tracks of FAXAI and HAGIBIS particularly in the early intensification of HAGIBIS cannot be explained only by the IOVs included in the leading three EOF modes but rather by the warming trend irrespective of the IOVs.