著者
SAITO Kazuo KUNII Masaru ARAKI Kentaro
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-027, (Released:2018-02-11)
被引用文献数
10

Local heavy rainfall of about 100 mm h-1 occurred in Tokyo and Kanagawa Prefecture on 26 August 2011. This rain was brought by a mesoscale convective system (MCS) that developed near a stationary front that slowly moved southward. In an analysis using geostationary multi-purpose satellite rapid scan images and dense automated weather station networks, development of the MCS occurred after the merging of sea breezes from the east (Kashima-nada) and the south (Tokyo Bay). Numerical experiments by the Japan Meteorological Agency (JMA) nonhydrostatic model (NHM) with horizontal resolutions of 10 km and 2 km using mesoscale 4D-VAR analysis of JMA for initial conditions tended to predict the position of intense rainfall areas west of observed positions. In the mesoscale ensemble forecast using perturbations from JMA’s one-week global ensemble prediction system (EPS) forecast, some ensemble members showed enhanced precipitation around Tokyo, but false precipitation areas appeared north of the Kanto and Hokuriku Districts. As an attempt to improve the model forecast, we modified the model, reducing the lower limit of subgrid deviation of water vapor condensation to diagnose the cloudiness for radiation. In the modified model simulation, surface temperatures around Tokyo increased by about 1°C and the position of the intense precipitation was improved, but the false precipitation areas in the Hokuriku District were also enhanced in the ensemble member which brought a better forecast than the control run. We also conducted ensemble prediction using a singular vector method based on NHM. One of the ensemble members unstabilized the lower atmosphere on the windward side of the Kanto District and suppressed the false precipitation in the Hokuriku District, and observed characteristics of the local heavy rainfall were well reproduced by NHM with a horizontal resolution of 2 km. A conceptual model of the initiation of deep convection by the formation of a low-level convergence zone succeeding merging of the two sea breezes from the east and south is proposed based on observations, previous studies, and numerical simulation results. In this event, the northerly ambient wind played an important role on the occurrence of the local heavy rainfall around Tokyo by suppressing the northward intrusion of the sea breeze from the south.
著者
FUKUI Shin IWASAKI Toshiki SAITO Kazuo SEKO Hiromu KUNII Masaru
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-056, (Released:2018-09-14)
被引用文献数
10

The feasibility of regional reanalysis assimilating only conventional observations was investigated as an alternative to dynamical downscaling to estimate the past three-dimensional high-resolution atmospheric fields with long-term homogeneity over about 60 years. The two types of widely applied dynamical downscaling approaches have problems. One with a serial long-term time-integration often fails to reproduce synoptic-scale systems and precipitation patterns. The other with frequent reinitializations underestimates precipitation due to insufficient spin-up. To address these problems maintaining long-term homogeneity, we proposed the regional reanalysis assimilating only the conventional observations. We examined it paying special attention to summer precipitation, through one-month experiment before conducting a long-term reanalysis. The system is designed to assimilate surface pressure and radiosonde upper-air observations, using the Japan Meteorological Agency's nonhydrostatic model (NHM) and the local ensemble transform Kalman filter (LETKF). It covers Japan and its surrounding area with a 5-km grid spacing and East Asia with a 25-km grid spacing, applying one-way double nesting in the Japanese 55-year reanalysis (JRA-55). The regional reanalysis overcomes the problems with both types of dynamical downscaling approaches. It reproduces actual synoptic-scale systems and precipitation patterns better. It also realistically describes spatial variability and precipitation intensity. The 5-km grid spacing regional reanalysis reproduces frequency of heavy precipitation and describes anomalous local fields affected by topography such as circulations and solar radiation better than the coarser reanalyses. We optimized the NHM-LETKF for long-term reanalysis by sensitivity experiments. The lateral boundary perturbations derived from an empirical orthogonal function analysis of JRA-55 brings stable analysis, saving computational costs. The ensemble size of at least 30 is needed because further reduction significantly degrades the analysis. The deterministic run from non-perturbed analysis is adopted as first guess in LETKF, instead of the ensemble mean of perturbed runs, enabling reasonable simulation of spatial variability in the atmosphere and precipitation intensity.
著者
MAEJIMA Yasumitsu MIYOSHI Takemasa KUNII Masaru SEKO Hiromu SATO Kae
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2019-014, (Released:2018-11-16)
被引用文献数
7

This study aims to investigate the potential impact of surface observations with a high spatial and temporal density on a local heavy rainstorm prediction. A series of Observing System Simulation Experiments (OSSEs) are performed using the Local Ensemble Transform Kalman Filter with the Japan Meteorological Agency non-hydrostatic model at 1-km resolution and with 1-minute update cycles. For the nature run of the OSSEs, a 100-m-resolution simulation is performed for the heavy rainstorm case that caused 5 fatalities in Kobe, Japan on July 28, 2008. Synthetic radar observation data, both reflectivity and Doppler velocity, are generated at 1-km resolution every minute from the 100-m-resolution nature run within a 60-km range, simulating the phased array weather radar (PAWR) at Osaka University. The control experiment assimilates only the radar data, and two sensitivity experiments are performed to investigate the impact of additional surface observations obtained every minute at 8 and 167 stations in Kobe. The results show that the dense and frequent surface observations have a significant positive impact on the analyses and forecasts of the local heavy rainstorm, although the number of assimilated observations is three orders of magnitude less than the PAWR data. Equivalent potential temperature and convergence at the low levels are improved, contributing to intensified convective cells and local heavy rainfalls.