著者
Naoki OYAMA Sho KANEKO Katsuaki MOMIYAMA Fumihiko HIROSE
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
IEICE TRANSACTIONS on Electronics (ISSN:09168516)
巻号頁・発行日
vol.E94-C, no.12, pp.1838-1844, 2011-12-01

Current density-voltage (J-V) and capacitance-voltage (C-V) characteristics of P3HT/n--silicon heterojunction diodes were investigated to clarify the carrier conduction mechanism at the organic/inorganic heterojunction. The J-V characteristics of the P3HT/n--Si junctions can be explained by a Schottky diode model with an interfacial layer. Diode parameters such as Schottky barrier height and ideality factor were estimated to be 0.78 eV and 3.2, respectively. The C-V analysis suggests that the depletion layer appears in the n--Si layer with a thickness of 1.2 µm from the junction with zero bias and the diffusion potential was estimated at 0.40 eV at the open-circuit condition. The present heterojunction allows a photovoltaic operation with power conversion efficiencies up to 0.38% with a simulated solar light exposure of 100 mW/cm2. The forward bias current was enhanced by coating the Si surface with a SiC layer, where the ideality factor was improved to be the level of 1.451.50.