著者
Katsuhiko Inamoto Tanjuro Goto Motoaki Doi
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.QH-102, (Released:2023-10-31)

Three rose varieties, ‘Meivildo’, ‘Meikatana’, and ‘Korcut0122’ were grown using an “arching” method for three years. The relationship between temperature and light intensity, and the yield and quality of cut flowers, were analyzed. Flowering flushes were observed 18 times in ‘Meivildo’ and ‘Meikatana’ and 16 times in ‘Korcut0122’ during the experimental period. In three varieties, significant negative linear regressions between the interval of flowering flush (growth period, GP) and the mean temperature per GP were observed. Significant positive correlations and linear regression were observed between the number of cut flowers per plant and the mean temperature in ‘Meivildo’ and ‘Meikatana’, and the total light integral per GP (TLI) in ‘Korcut0122’. In three varieties, significant positive correlations and linear regressions were observed between the total cut flower weight per plant, and the mean daily light integral per GP (DLI) and TLI. Highly significant positive correlations and linear regressions were observed between the daily gain in flower weight (DGW) of cut flowers per plant (the total cut flower weight divided by the number of days of GP) and the mean DLI in all three varieties. In ‘Meivildo’ and ‘Meikatana’, cut flower weight per stem had significant negative correlations and linear regression with mean temperature and positive ones with TLI, while ‘Korcut0122’ showed no significant correlation with the three environmental factors. Significant positive correlations and linear regressions existed between the specific cut flower weight (the cut flower weight per stem length) and TLI in all three varieties, and negative ones existed between the specific cut flower weight and mean temperature in ‘Meivildo’ and ‘Meikatana’. The relationship between the results in this experiment and previous reports on the relation between the environment and cut flower yield quality are discussed. Finally, we present the significance of the method used in this experiment for 1) prediction of flowering and shipping of cut flowers, 2) evaluation of differences in characteristics among the rose varieties, and 3) contribution to the development of a growth model.
著者
Katsuhiko Inamoto Kaori Nagasuga Takayoshi Yano
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.UTD-372, (Released:2022-06-25)

We investigated the effects of CO2 enrichment on photosynthesis, growth, and dry matter accumulation in the Oriental hybrid lily ‘Siberia’. The photosynthetic rate increased as the CO2 concentration was elevated compared to the ambient level. The increase in the photosynthetic rate was greater in the low concentration range and lower in the high concentration range. The relationship between the light intensity-photosynthetic rate and temperature-photosynthetic rate was investigated under different CO2 concentrations. The entire light-photosynthesis and temperature-photosynthesis curves moved toward a considerably higher photosynthetic rate when the CO2 concentration was increased from 380 ppm to 1000 ppm. In contrast, when the CO2 concentration was increased from 1000 ppm to 2000 ppm, the increase in the entire light-photosynthesis curve was small. The relationship between the CO2 concentration and the maximum temperature point of the photosynthetic rate was unclear. We also cultured ‘Siberia’ lily plants with and/or without CO2 enrichment (1500 ppm) altered before (the early stage) and after (the late stage) the visible flower bud stage. The CO2 enrichment increased dry weights dry weight/fresh weight ratios of whole plants, and individual parts at flowering, resulting in improved cut flower quality and enlargement of the mother bulb and daughter bulblets. The effective period of CO2 enrichment was after the visible flower bud stage. In cases where CO2 enrichment was effective for dry matter accumulation, the dry matter distribution ratios of the mother bulb and daughter bulblets to the whole plant were high, and those of the leaves, stem, and flower buds were low. The relative growth rate and net assimilation rate from planting to the flowering stage were increased with CO2 enrichment applied after the visible flower bud stage, indicating that the dry matter accumulation and photosynthesis were enhanced. Finally, the issues that need to be addressed for applying practical CO2 enrichment technology to various lilies are discussed.