- 著者
-
Takeshi Itabashi
Jun Takagi
Kazuya Suzuki
Shin'ichi Ishiwata
- 出版者
- 日本生物物理学会
- 雑誌
- BIOPHYSICS (ISSN:13492942)
- 巻号頁・発行日
- vol.9, pp.73-78, 2013 (Released:2013-06-08)
- 参考文献数
- 36
- 被引用文献数
-
3
For genome stability, the proper segregation of chromosomes is required. The exquisite process of chromosome segregation has charmed a lot of cell- and molecular biologists into watching what happens inside a mitotic cell and how each molecule contributes to this process for the accomplishment of accurate cell division1. The process to partition the duplicated genome to the daughter cells in each cell division is mediated by a self-organized structure called the mitotic spindle. It is well known that the mitotic spindle is a multi-component macromolecular machine composed of microtubules, molecular motors (kinesins, cytoplasmic dynein), and other regulatory molecules (microtubule-associated proteins, kinases, etc.). In recent years, most of the protein components of the mitotic spindle have been identified and the functions of these proteins have been characterized using molecular perturbations2,3. Thus, the mechanisms for spindle assembly and chromosome segregation are being revealed rapidly. However, the chromosome segregation machinery is poorly understood from the mechanical point of view, such as how the mitotic spindle within a cell responds to a variety of mechanical forces, originating from cell-cell interactions or environmental fluctuations. Recent advances in the controlled mechanical perturbation have indicated that the mitotic spindle possesses a structural pliability, size adaptability to the applied external forces, and a strong self-organizing ability. Mechanical perturbations revealed also the mechanochemical regulation of chromosome segregation machinery, which responds to the applied forces. Here, we discuss the current progress in the biophysical research on the architectural and functional dynamics of the mitotic spindle.