著者
Wataru Suda Michiei Oto Seigo Amachi Hirofumi Shinoyama Masahiro Shishido
出版者
日本微生物生態学会 / 日本土壌微生物学会 / Taiwan Society of Microbial Ecology / 植物微生物研究会
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.23, no.3, pp.248-252, 2008 (Released:2008-08-13)
参考文献数
29
被引用文献数
10 17

We developed a method for direct DNA isolation from phyllosphere microbial communities, designated Direct-DIP. This method comprises DNA extraction from non-shredded leaves with benzyl chloride, and DNA purification by gel filtration. Scanning electron microscopy showed that epiphytic microorganisms were completely removed from the leaf surface after benzyl chloride treatment, while microstructures of the leaf were not damaged. Clear DGGE profiles were obtained regardless of the plant species. Shannon diversity indices of DGGE profiles by Direct-DIP were higher than those by a conventional method. Our findings suggest that Direct-DIP is a rapid, simple, and cost-effective method of extracting DNA from phyllosphere microbial communities.
著者
Sirinan Suktawee Masahiro Shishido Shanshan Wang Takanori Saito Katsuya Okawa Hitoshi Ohara Hataitip Nimitkeatkai Hiromi Ikeura Satoru Kondo
出版者
The Japanese Society for Horticultural Science
雑誌
The Horticulture Journal (ISSN:21890102)
巻号頁・発行日
pp.UTD-001, (Released:2018-08-18)
被引用文献数
7

The effects of the jasmonic acid derivative n-propyl dihydrojasmonate (PDJ) on ethylene signal transduction and endogenous jasmonic acid (JA) in apples infected with Botrytis cinerea (gray mold) were investigated. Apples were dipped into 400 μM PDJ solution and then inoculated with B. cinerea. The fruit were stored at 25°C and 95% relative humidity for 16 days after PDJ treatment. The inoculation without PDJ application (PDJ− Ino+) showed larger B. cinerea lesion diameters compared to the PDJ application with inoculation (PDJ+ Ino+) and the untreated controls. In contrast, the PDJ+ Ino+ group showed a higher ethylene production rate, higher 1-aminocyclo-propane-1-carboxylic acid (ACC) concentration, and greater expressions of ethylene-related genes [MdACS1 (ACC synthase), MdACO1 (ACC oxidase), MdETR1 (Ethylene receptor 1), MdERS1 (Ethylene response sensor 1), and MdCTR1 (Constitutive triple response 1)], and endogenous JA, MdAOS1 (Allene oxide synthase 1) gene. However, the abscisic acid concentrations were decreased in the PDJ+ Ino+ group. The results suggest that PDJ application induces ethylene production through ethylene-related genes and endogenous JA, resulting in B. cinerea infection inhibition.
著者
Wataru Suda Asami Nagasaki Masahiro Shishido
出版者
日本微生物生態学会 / 日本土壌微生物学会 / Taiwan Society of Microbial Ecology / 植物微生物研究会
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.24, no.3, pp.217-223, 2009 (Released:2009-09-04)
参考文献数
40
被引用文献数
20 45

To investigate changes in bacterial communities associated with a fungal foliar disease, epiphytic bacteria from powdery mildew-infected and uninfected leaves of cucumber and Japanese spindle were analyzed using both culture-dependent and -independent methods. Dilution plate counting suggested that powdery mildew-infected leaves likely accommodated larger populations of phyllosphere bacteria than uninfected leaves. Community-level physiological profiles (CLPP) also indicated that functional diversity, richness, and evenness of bacterial communities were significantly greater in the phyllosphere of powdery mildew-infected leaves. Genotype diversity and richness based on band patterns of denaturing gradient gel electrophoresis (DGGE) of the phyllosphere bacterial community were greater for leaves infected by powdery mildew. A principle component analysis of CLPP and DGGE patterns revealed a clear difference between infected and uninfected leaves of both plant species. These results suggest that powdery mildew-infection results in larger bacterial populations, and greater diversity and richness, and also changes the structure of the phyllosphere bacterial community. Furthermore, DNA sequences of the DGGE bands that showed greater intensity in the infected than uninfected leaves, differed between cucumber and Japanese spindle. This suggests that specific bacteria are associated with the plant species accompanying this fungal infection.