著者
Kenta Yonezuka Jun Shimodaira Michiro Tabata Shoko Ohji Akira Hosoyama Daisuke Kasai Atsushi Yamazoe Nobuyuki Fujita Takayuki Ezaki Masao Fukuda
出版者
公益財団法人 応用微生物学・分子細胞生物学研究奨励会
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
pp.2016.06.003, (Released:2016-12-17)
参考文献数
78
被引用文献数
22

Pseudomonas putida is well-known for degradation activities for a variety of compounds and its infections have been reported. Thus, P. putida includes both clinical and nonclinical isolates. To date, no reports have examined the phylogenetic relationship between clinical and nonclinical isolates of the P. putida group. In this study, fifty-nine strains of P. putida group containing twenty-six clinical, and thirty-three nonclinical, isolates, were subjected to phylogenetic and taxonomic analyses based on 16S rRNA gene sequences and nine housekeeping gene sequences, including argS, dnaN, dnaQ, era, gltA, gyrB, ppnK, rpoB, and rpoD, to obtain insights into the diversity of species in this group. More than 97.6% similarity was observed among the 16S rRNA gene sequences of all the strains examined, indicating that the resolution of 16S rRNA gene sequences is inadequate. Phylogenetic analysis based on the individual housekeeping genes listed above improved the resolution of the phylogenetic trees, which are different from each other. Multilocus sequence analysis (MLSA) based on the concatenated sequences of the nine genes significantly improved the resolution of the phylogenetic tree, and yielded approximately the same results as average nucleotide identity (ANI) analysis, suggesting its high reliability. ANI analysis classified the fifty-nine strains into twenty-six species containing seventeen singletons and nine strain clusters based on the 95% threshold. It also indicated the mixed distribution of clinical and nonclinical isolates in the six clusters, suggesting that the genomic difference between clinical and nonclinical isolates of the P. putida group is subtle. The P. putida type strain NBRC 14164T is a singleton that is independently located from the P. putida strains distributed among the six clusters, suggesting that the classification of these strains and the differentiation of species in the P. putida group should be re-examined. This study greatly expands insights into the phylogenetic diversity of the P. putida group.
著者
Kazuhide KIMBARA Toshiyuki HASHIMOTO Masao FUKUDA Takao KOANA Masamichi TAKAGI Michio OISHI Keiji YANO
出版者
Japan Society for Bioscience, Biotechnology, and Agrochemistry
雑誌
Agricultural and Biological Chemistry (ISSN:00021369)
巻号頁・発行日
vol.52, no.11, pp.2885-2891, 1988 (Released:2006-04-05)
参考文献数
27
被引用文献数
19

A mixed culture composed of two Pseudomonas strains, designated as KKL101 and KKS102, was isolated from soil. This mixed culture had an enhanced ability to degrade various polychlorinated biphenyls (PCBs) which include highly chlorinated components. They did not grow individually on the mineral salts medium supplemented with a highly chlorinated PCB (PCB48, a mixture of mainly tetrachlorobipheny1) and biphenyl. When the spent medium of KKL101 was added to the washed cell preparation of KKS102, however, the latter grew on these carbon sources, producing yellow compounds which were identified as metabolic intermediates of the carbon sources, biphenyl and PCBs. These results suggest that KKL101 produces a growth factor(s) essential for KKS102 to grow on PCBs and that the growth of KKL101 is supported by the metabolic intermediates produced by KKS102. It appears that these two bacterial strains have a symbiotic relationship. From the analysis of the degradation products of various PCB congeners, it was found that strain KKS102 degrades a wide range of PCBs which have been considered to be refractory to biological degradation.
著者
Saori Watahiki Nobutada Kimura Atsushi Yamazoe Takamasa Miura Yuji Sekiguchi Naohiro Noda Satoko Matsukura Daisuke Kasai Yoh Takahata Hideaki Nojiri Masao Fukuda
出版者
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
pp.2018.10.003, (Released:2019-03-08)
参考文献数
36
被引用文献数
7

Bioremediation may affect the ecological system around bioremediation sites. However, little is known about how microbial community structures change over time after the initial injection of degraders. In this study, we have assessed the ecological impact of bioaugmentation using metagenomic and metatranscriptomic approaches to remove trichlorinated ethylene/cis-dichloroethylene (TCE/cDCE) by Rhodococcus jostii strain RHA1 as an aerobic chemical compound degrader. Metagenomic analysis showed that the number of organisms belonging to the genus Rhodococcus, including strain RHA1, increased from 0.1% to 76.6% of the total microbial community on day 0 at the injection site. Subsequently, the populations of strain RHA1 and other TCE/cDCE-degrading bacteria gradually decreased over time, whereas the populations of the anaerobic dechlorinators Geobacter and Dehalococcoides increased at later stages. Metatranscriptomic analysis revealed a high expression of aromatic compound-degrading genes (bphA1-A4) in strain RHA1 after RHA1 injection. From these results, we concluded that the key dechlorinators of TCE/cDCE were mainly aerobic bacteria, such as RHA1, until day 1, after which the key dechlorinators changed to anaerobic bacteria, such as Geobacter and Dehalococcocides, after day 6 at the injection well. Based on the α-diversity, the richness levels of the microbial community were increased after injection of strain RHA1, and the microbial community composition had not been restored to that of the original composition during the 19 days after treatment. These results provide insights into the assessment of the ecological impact and bioaugmentation process of RHA1 at bioremediation sites.
著者
Saori Watahiki Nobutada Kimura Atsushi Yamazoe Takamasa Miura Yuji Sekiguchi Naohiro Noda Satoko Matsukura Daisuke Kasai Yoh Takahata Hideaki Nojiri Masao Fukuda
出版者
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
vol.65, no.5, pp.225-233, 2019 (Released:2019-12-19)
参考文献数
36
被引用文献数
1 7

Bioremediation may affect the ecological system around bioremediation sites. However, little is known about how microbial community structures change over time after the initial injection of degraders. In this study, we have assessed the ecological impact of bioaugmentation using metagenomic and metatranscriptomic approaches to remove trichlorinated ethylene/cis-dichloroethylene (TCE/cDCE) by Rhodococcus jostii strain RHA1 as an aerobic chemical compound degrader. Metagenomic analysis showed that the number of organisms belonging to the genus Rhodococcus, including strain RHA1, increased from 0.1% to 76.6% of the total microbial community on day 0 at the injection site. Subsequently, the populations of strain RHA1 and other TCE/cDCE-degrading bacteria gradually decreased over time, whereas the populations of the anaerobic dechlorinators Geobacter and Dehalococcoides increased at later stages. Metatranscriptomic analysis revealed a high expression of aromatic compound-degrading genes (bphA1-A4) in strain RHA1 after RHA1 injection. From these results, we concluded that the key dechlorinators of TCE/cDCE were mainly aerobic bacteria, such as RHA1, until day 1, after which the key dechlorinators changed to anaerobic bacteria, such as Geobacter and Dehalococcocides, after day 6 at the injection well. Based on the α-diversity, the richness levels of the microbial community were increased after injection of strain RHA1, and the microbial community composition had not been restored to that of the original composition during the 19 days after treatment. These results provide insights into the assessment of the ecological impact and bioaugmentation process of RHA1 at bioremediation sites.