著者
Tsuyoshi Thomas SEKIYAMA Mizuo KAJINO Masaru KUNII
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.95, no.6, pp.447-454, 2017 (Released:2017-11-14)
参考文献数
26
被引用文献数
17

We investigated the predictability of plume advection in the lower troposphere and the impact of AMeDAS surface wind data assimilation by using radioactive cesium emitted by the Fukushima nuclear accident in March 2011 as an atmospheric tracer. We conducted two experiments of radioactive plume predictions over eastern Japan for March 15, 2011 with a 3-km horizontal resolution using the Japan Meteorological Agency non-hydrostatic weather forecast model and local ensemble transform Kalman filter (JMANHM-LETKF) data assimilation system. The assimilated meteorological data were obtained from the standard archives collected for the Japan Meteorological Agency operational numerical weather prediction and the AMeDAS surface wind observations. The standard archives do not contain land-surface wind observations. The modeled radioactive cesium concentrations were examined for plume arrival times at 40 observatories. The mean error of the plume arrival times for the standard experiment (assimilating only the standard archives) was 82.0 min with a 13-h lead-time on an average. In contrast, the mean error of the AMeDAS experiment (assimilating both the standard archives and AMeDAS surface wind observations) was 72.8 min, which was 9.2 min (11 %) better than that of the standard experiment. This result indicates that the plume prediction has a reasonable accuracy for the environmental emergency response and the prediction can be significantly improved by the surface wind data assimilation.
著者
Hiromu Seko Kazuo Saito Masaru Kunii Masayuki Kyouda
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.5, pp.57-60, 2009 (Released:2009-04-15)
参考文献数
11
被引用文献数
2 6 4

Energy Helicity Index (EHI), defined by the product of Convective Available Potential Energy (CAPE) and Storm Relative Environmental Helicity (SREH), is one of potential parameters to diagnose the possibility of tornado outbreak. In this study, probabilities that EHI exceed some criteria were examined with a mesoscale ensemble prediction system, whose grid interval was 15 km, in two tornado events in Japan (Nobeoka and Saroma tornado events). High probability regions (HPR, hereafter) of large SREH existed in the northeastern quadrants of a typhoon or a low-pressure system, while HPRs of large CAPE extended along the warm humid airflow from the Pacific Ocean. In the two events, the tornados were formed near HPRs of large EHI, where HPRs of large SREH and CAPE were overlapped. This result indicates the possibility of the probability forecast of the potential parameter for tornado outbreak.
著者
Yasumitsu Maejima Masaru Kunii Takemasa Miyoshi
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.13, pp.174-180, 2017 (Released:2017-09-27)
参考文献数
37
被引用文献数
14

This study aims to investigate the impacts of 30-second-update and 100-m-resolution data assimilation (DA) on a prediction of sudden local torrential rains caused by an isolated convective system in Kobe city on 11 September 2014. We perform a Local Ensemble Transform Kalman filter (LETKF) experiment with the Japan Meteorological Agency non-hydrostatic model (JMA-NHM) at 1-km and 100-m resolution using every-30-second radar reflectivity observed by the phased array weather radar (PAWR) at Osaka University. The 1-km-mesh experiment shows that 30-second-update PAWR DA has positive impacts on the analyses and forecasts. Moreover, the 100-m-mesh experiment shows significant advantages in representing the rainfall intensity and fine structure of the convective system. The promising results suggest that 30-second-update, 100-m-mesh DA have a great potential for predicting sudden local rain events.
著者
Masaru Kunii Michiko Otsuka Kazuki Shimoji Hiromu Seko
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.12, pp.209-214, 2016 (Released:2016-08-05)
参考文献数
21
被引用文献数
13

Himawari-8, a next-generation geostationary meteorological satellite that has been in operation since July 2015, incorporates significant improvements in resolution, scan frequency, and number of bands, bringing new capabilities to weather forecasting. By taking advantage of the availability of high-frequency data with high spatial resolution, an ensemble Kalman filter implemented with a mesoscale regional model assimilated rapid-scan atmospheric motion vectors (RS-AMVs) from Himawari-8. Data assimilation and ensemble forecast experiments were conducted for a heavy rainfall event that occurred in September 2015 in the Kanto and Tohoku regions of Japan. The results showed that the inclusion of RS-AMVs improved precipitation scores, especially for weak and moderate rainfall. In addition, the subsequent model forecast simulated successfully the band of heavy rainfall. Ensemble-based probabilistic forecasts showed that when RS-AMVs were assimilated, the results captured the occurrence of torrential rainfall with a relatively high probability. The ensemble-based correlation analysis indicated that the strong rainfall was related to advection of moisture at low to mid levels and moisture flux convergence at lower levels. Simulations with a higher resolution model initialized by nested data assimilation showed that the assimilation of frequent RS-AMVs improved the forecast results.
著者
Tsuyoshi T. SEKIYAMA Masaru KUNII Mizuo KAJINO Toshiki SHIMBORI
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.93, no.1, pp.49-64, 2015 (Released:2015-03-18)
参考文献数
55
被引用文献数
1 34

We investigated the horizontal resolution dependence of atmospheric radionuclide (Cs-137) simulations of the Fukushima nuclear accident on March 15, 2011. We used Eulerian and Lagrangian transport models with low- (15-km), medium- (3-km), and high- (500-m) resolutions; both models were driven by the same meteorological analysis that was prepared by our data assimilation system (NHM-LETKF) for each horizontal resolution. This preparation was necessary for the resolution-dependent investigation, excluding any interpolation or averaging of meteorological fields. In the results, the 15-km grid analysis could not reproduce Fukushima’s mountainous topography in detail, and consequently failed to depict a complex wind structure over mountains and valleys. In reality, the Cs-137 plume emitted from the Fukushima Daiichi Nuclear Power Plant (FDNPP) was mostly blocked by Mt. Azuma and other mountains along the Naka-dori valley after crossing over Abukuma Mountains on March 15, 2011. However, the 15-km grid simulations could not represent the blockage of the Cs-137 plume, which unnaturally spread through the Naka-dori valley. In contrast, the 3-km and 500-m grid simulations produced very similar Cs-137 concentrations and depositions, and successfully produced the plume blockage and deposition along the Naka-dori valley. In conclusion, low-resolution (15-km grid or greater) atmospheric models should be avoided for assessing the Fukushima nuclear accident when a regional analysis is needed. Meanwhile, it is reasonable to use 3-km grid models instead of 500-m grid models due to their similarities and the high computational burden of 500-m grid model simulations.