著者
Aili Ailizati Isura Sumeda Priyadarshana Nagahage Atsuko Miyagi Toshiki Ishikawa Maki Kawai-Yamada Taku Demura Masatoshi Yamaguchi
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.39, no.2, pp.147-153, 2022-06-25 (Released:2022-06-25)
参考文献数
29
被引用文献数
1

An Arabidopsis NAC domain transcription factor VND-INTERACTING2 (VNI2) was originally isolated as an interacting protein with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel element differentiation. VNI2 inhibits transcriptional activation activity of VND7 by forming a protein complex. Here, to obtain insights into how VNI2 regulates VND7, we tried to identify the amino acid region of VNI2 required for inhibition of VND7. VNI2 has an amino acid sequence similar to the ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR (ERF)-associated amphiphilic repression (EAR) motif, conserved in transcriptional repressors, at the C-terminus. A transient expression assay showed that the EAR-like motif of VNI2 was not required for inhibition of VND7. The C-terminal deletion series of VNI2 revealed that 10 amino acid residues, highly conserved in the VNI2 orthologs contributed to effective repression of the transcriptional activation activity of VND7. Observation of transgenic plants ectopically expressing VNI2 showed that the identified 10 amino acid sequence strongly affected xylem vessel formation and plant growth. These data indicated that the 10 amino acid sequence of VNI2 has an important role in its transcriptional repression activity and negative regulation of xylem vessel formation.
著者
Aili Ailizati Isura Sumeda Priyadarshana Nagahage Atsuko Miyagi Toshiki Ishikawa Maki Kawai-Yamada Taku Demura Masatoshi Yamaguchi
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.4, pp.415-420, 2021-12-25 (Released:2021-12-25)
参考文献数
29
被引用文献数
4

A NAC domain transcription factor, VND-INTERACTING2 (VNI2) is originally isolated as an interacting protein with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel element differentiation. VND7 directly or indirectly induces expression of a number of genes associated with xylem vessel element differentiation, while VNI2 inhibits the transcriptional activation activities of VND7 by forming a protein complex. VNI2 is expressed at an earlier stage of xylem vessel element differentiation than VND7. Here, to investigate whether VND7 also affects VNI2, a transient expression assay was performed. We demonstrated that VND7 downregulated VNI2 expression. Other transcription factors involved in xylem vessel formation did not show the negative regulation of VNI2 expression. Rather, MYB83, a downstream target of VND7, upregulated VNI2 expression. By using the deletion series of the VNI2 promoter, a 400 bp region was identified as being responsible for downregulation by VND7. These data suggested that VND7 and VNI2 mutually regulate each other, and VNI2 expression is both positively and negatively regulated in the transcriptional cascade.
著者
Ryoko TOMITA Kenichiro TODOROKI Hiroshi MARUOKA Hideyuki YOSHIDA Toshihiro FUJIOKA Manabu NAKASHIMA Masatoshi YAMAGUCHI Hitoshi NOHTA
出版者
The Japan Society for Analytical Chemistry
雑誌
Analytical Sciences (ISSN:09106340)
巻号頁・発行日
vol.32, no.8, pp.893-900, 2016-08-10 (Released:2016-08-10)
参考文献数
22
被引用文献数
1 12

We performed a comprehensive quantification of 20 amino acids in RPMI 1640 medium-cultured human colorectal adenocarcinoma cells to evaluate the efficacy of 5-fluorouracil treatment under hypoxic and hypoglycemic conditions, which mimic the tumor microenvironment. In this study, we developed a simple and comprehensive analytical method by using LC-MS/MS connected to the Intrada amino acid column, which eluted amino acids within 9 min. The present method covered a linearity range of 3.6 – 1818 μM, except for Gly (227 – 1818 μM), Ala, Asp, His (7.1 – 1818 μM each), and Trp (3.6 – 909 μM). The limits of detection were in the range of 0.02 – 38.0 pmol per injection in a standard solution. Amino acid concentration data were analyzed using principal-component analysis to represent samples on two-dimensional graphs. Linear discriminant analysis was used to classify samples on the score plots. Using this approach, the effect of 5-fluorouracil treatment could be successfully discriminated at high discrimination rates. Moreover, several amino acids were extracted from corresponding loading plots as candidate markers for distinguishing the effects of the 5-fluorouracil treatment or tumor microenvironmental conditions. These results suggest that our proposed method might be a useful tool for evaluating the efficacy of anticancer drugs in the tumor microenvironment.