著者
Yutaka MAKIZAKI Ayako MAEDA Miyuki YAMAMOTO Saya TAMURA Yoshiki TANAKA Shunji NAKAJIMA Hiroshi OHNO
出版者
BMFH Press
雑誌
Bioscience of Microbiota, Food and Health (ISSN:21863342)
巻号頁・発行日
vol.39, no.3, pp.145-151, 2020 (Released:2020-07-28)
参考文献数
25
被引用文献数
3 7

Recent studies of metformin, the first-line drug for type 2 diabetes, have reported the involvement of gut microbiota in the mechanism underlying its antihyperglycemic effect. However, the mechanisms underlying the development of diarrhea and bloating, which are adverse effects of metformin, are unclear, and these effects decrease the quality of life of metformin-receiving patients with diabetes. In this study, we focused on the effects of metformin on gut microbiota. Namely, we examined the effects of Bifidobacterium bifidum G9-1 (BBG9-1), which has the ability to improve dysbiosis, on the changes in gut microbiota and occurrence of soft feces (increased fecal water content) during the administration of metformin. The results showed that coadministration of BBG9-1 and metformin suppressed metformin-mediated changes in the gut microbiota and, thus, soft feces. Meanwhile, BBG9-1 did not influence the antihyperglycemic effect of metformin. Based on these results, we believe that BBG9-1, which could improve gut microbiota, suppresses metformin-induced soft feces without influencing the drug’s antihyperglycemic effect.
著者
Ryoko Yamagishi Tomohiko Wakayama Hiroki Nakata Kannika Adthapanyawanich Tewarat Kumchantuek Miyuki Yamamoto Shoichi Iseki
出版者
日本組織細胞化学会
雑誌
ACTA HISTOCHEMICA ET CYTOCHEMICA (ISSN:00445991)
巻号頁・発行日
vol.47, no.3, pp.95-102, 2014-06-30 (Released:2014-06-28)
参考文献数
28
被引用文献数
2 10

In the major salivary glands of mice, acinar cells in the parotid gland (PG) are known to be the main site for the production of the digestive enzyme α-amylase, whereas α-amylase production in the submandibular gland (SMG) and sublingual gland (SLG), as well as the cell types responsible for α-amylase production, has been less firmly established. To clarify this issue, we examined the expression and localization of both the mRNA and protein of α-amylase in the major salivary glands of male and female mice by quantitative and histochemical methods. α-amylase mRNA levels were higher in the order of PG, SMG, and SLG. No sexual difference was observed in α-amylase mRNA levels in the PG and SLG, whereas α-amylase mRNA levels in the female SMG were approximately 30% those in the male SMG. Using in situ hybridization and immunohistochemistry, signals for α-amylase mRNA and protein were found to be strongly positive in acinar cells of the PG, serous demilune cells of the SLG, and granular convoluted tubule (GCT) cells of the male SMG, weakly positive in seromucous acinar cells of the male and female SMG, and negative in mucous acinar cells of the SLG. These results clarified that α-amylase is produced mainly by GCT cells and partly by acinar cells in the SMG, whereas it is produced exclusively by serous demilune cells in the SLG of mice.