著者
Xinyue Wang Hironobu Iwabuchi Naoya Takahashi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.137-142, 2019 (Released:2019-06-27)
参考文献数
21
被引用文献数
1 2

Using several cloud properties retrieved from the Himawari-8 satellite, combined with the best track storm center information, the temporal-spatial features of tropical cyclone (TC) diurnal pulses in 2015 Super Typhoon Atsani (T1516) are coherently depicted. To demonstrate the radially outward transition processes of the diurnal pulses from one cloud type to another, we divided high clouds into three types: opaque high cloud (OHC), cirrostratus (Cs), and cirrus (Ci). Two alternatively appeared peaks in cloud top height (CTH) within the storm central area and their corresponding outward pulses are identified. The first pulse covers a 24-hour period, it starts at ∼0500-0700 local solar time (LST), with a gradual transition from OHC to Cs, then ends in Ci at around 0400 LST. The second pulse lasts for half a day and limited within 1000 km from the storm center. When the first CTH pulse ends in OHC, Cs, and Ci, their cloud fractional coverage and the outward expansion of large cloud optical thickness also reach maximum accordingly.
著者
Naoya Takahashi Tadahiro Hayasaka Hajime Okamoto
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.12, pp.91-95, 2016 (Released:2016-04-05)
参考文献数
34
被引用文献数
1

We revealed the difference in the ice cloud microphysical properties of high clouds between the western Pacific (WP) and eastern Pacific (EP) regions, based on satellite retrievals. The effective particle radius (re) was analyzed by using active sensors on board the CloudSat and CALIPSO satellites. We focused on ice clouds, defined as clouds with cloud top temperatures of less than 0°C. These ice clouds are classified into five types defined by the cloud optical thickness (COT). Mean cloud top heights of high cloud in WP were higher than those in EP by about 2km. The re of optically thin clouds (0 < COT < 0.3) showed weak temperature dependency over both regions. For optically thick clouds (3 < COT), re increases with temperature (T). In the WP, re at lower temperatures (T < −40°C) is larger than that in the EP, whereas in the EP, re at higher temperatures (T > −40°C) is larger than that in the WP. The difference in re may be caused by differences in moisture convergence and upward motion.