著者
Taro Furubayashi Norikazu Ichihashi
出版者
The Biophysical Society of Japan
雑誌
Biophysics and Physicobiology (ISSN:21894779)
巻号頁・発行日
vol.19, pp.e190005, 2022 (Released:2022-02-26)
参考文献数
43

How can evolution assemble lifeless molecules into a complex living organism? The emergent process of biological complexity in the origin of life is a big mystery in biology. In vitro evolution of artificial molecular replication systems offers unique experimental opportunities to probe possible pathways of a simple molecular system approaching a complex life-like system. This review focuses on experimental efforts to examine evolvability of molecules in vitro from the pioneering Spiegelman’s experiment to our latest research on an artificial RNA self-replication system. Genetic translation and compartmentalization are shown to enable sustainable replication and evolution. Latest studies are revealing that coevolution of self-replicating “host replicators” and freeloading “parasitic replicators” is crucial to extend evolvability of a molecular replication system for continuous evolution and emergence of diversity. Intense competition between hosts and parasites would have existed even before the origin of life and contributed to generating complex molecular ecosystems. This review article is an extended version of the Japanese article “An in vitro evolutionary journey of an artificial RNA replication system towards biological complexity” published in SEIBUTSU-BUTSURI Vol.61, p.240–244 (2021).”
著者
Kazuki Ohta Tenma Shimizu Taku Oshima Norikazu Ichihashi
出版者
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
pp.2022.10.003, (Released:2022-11-15)
参考文献数
29

Various bacteria can change to a spherical cell-wall-deficient state, called L-from, in the presence of antibiotics that inhibit cell wall synthesis. L-forms are classified into two types: unstable and stable L-forms. Unstable L-forms revert to a normal walled state in the absence of antibiotics, while stable L-forms remain in their wall-deficient state. The conversion from unstable to stable L-forms has been often observed during long-term cultivation. However, the genetic cause for this conversion is not yet fully understood. Here, we obtained stable Bacillus subtilis L-form strains from unstable L-form strains via three independent long-term culturing experiments. The whole genome sequencing of the long-cultured strains identified many mutations, and some mutations were commonly found in all three long-cultured strains. The knockout strain of one of the commonly mutated genes, tagF, in the ancestral strain lost the ability to revert to walled state (rod shape), supporting that eliminating the function of tagF gene is one of the possible methods to convert unstable L forms to a stable state.