深層学習を活用した胸部 X 線写真の自動診断は現在盛んに研究されている.診断精度を改善するためには,異常と疑われる局所画像を抽出し,深層学習ネットワークの入力とするかが重要である.そこで本研究では,「診断時に医師が凝視している領域を異常と疑われる局所画像として抽出できるのではないか」 という仮説を立てた上で,視線データを基に抽出された局所画像を入力とする深層学習モデルを構築した.その結果,視線データを使用しない場合,または医師訓練を受けていない被験者の視線データを使用した場合に比べて,医師の視線データを使用した場合により高い精度が認められ,視線データの有用性を示した.