著者
SHIBATA Kiyotaka SAI Ayano
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2021-019, (Released:2021-01-13)
被引用文献数
2

The surface meteorological data in Japan, beginning around the 1880s, archived by the Japan Meteorological Agency are analyzed focusing on the long–term trends and variations in humidity and temperature. It is found that the annual–mean temperature trend exhibits statistically significant warming of 1.0-2.5°C century−1 for most stations, while the annual–mean relative humidity shows significantly decreasing trend of −2 % to −12 % century−1 for most stations with small seasonality. On the other hand, the annual–mean mixing ratio trend displays a different spatial distribution compared to the temperature or relative humidity trend. In this study, three types of trends exist: significantly positive and negative values, and virtually zero. Significantly negative trends of about −0.2 to −0.3 g kg−1 century−1 are located approximately in the Pacific side of Honshu from the middle Tohoku through Shikoku to the eastern Kyushu. Significantly positive trends of about 0.2 to 0.4 g kg−1 century−1 are observed over Hokkaido, the western Japan along Sea of Japan, the western Kyushu, and the remote islands including Okinawa. The overall pattern is similar for other seasons except for most of the remote islands in winter. Empirical orthogonal function (EOF) analysis indicates that the linear trends in the annual–mean temperature and relative humidity can be almost explained by the nearly uniform persistent warming and drying of EOF–1 components. On the other hand, for the annual–mean mixing ratio, EOF–2 is almost identical with the linear trend component, although the fraction of EOF–2 (14 %) is much smaller than that of EOF–1 (49 %). In recent years from 1960 to 2018 the mixing ratio and temperature trends are very different from those in the longer period from the 1880s. The mixing ratio trend and the temperature trend increase on average from 0.0 to 0.5 g kg−1 century−1 and from 1.5°C to 2.5°C century−1, respectively.
著者
SHIBATA Kiyotaka LEHMANN Ralph
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-032, (Released:2020-04-02)
被引用文献数
2

Ozone loss pathways and their rates in the ozone quasi-biennial oscillation (QBO) simulated by a chemistry-climate model of the Meteorological Research Institute of Japan are evaluated by using an objective pathway analysis program (PAP). The analyzed chemical system contains catalytic cycles due to NOx, HOx, ClOx, Ox, and BrOx. PAP quantified the rates of all significant catalytic ozone loss cycles, and evaluated the partitioning among these cycles. The QBO amplitude of the sum of all cycles amounts to about 4 and 14 % of the annual mean of the total ozone loss rate at 10 and 20 hPa, respectively. The contribution of catalytic cycles to the QBO of the ozone loss rate is found to be as follows: NOx cycles contribute the largest fraction (50-85 %) of the QBO amplitude of the total ozone loss rate; HOx cycles are the second-largest (20-30 %) below 30 hPa and the third-largest (about 10 %) above 20 hPa; Ox cycles rank third (5-20 %) below 30 hPa and second (about 20 %) above 20 hPa; ClOx cycles rank fourth (5-10 %); and BrOx cycles are almost negligible. The relative contribution of the NOx and Ox cycles to the QBO amplitude of ozone loss differs by up to 10 and 20 %, respectively, from their contribution to the annual-mean ozone loss rate. The ozone QBO at 20 hPa is mainly driven by ozone transport, which then affects the ozone loss rate. In contrast, the ozone QBO at 10 hPa is driven chemically mainly by NOx and the temperature dependence of [O]/[O3], which results from the temperature dependence of the reaction O + O2 + M → O3 + M. In addition, the ozone QBO at 10 hPa is influenced by the overhead ozone column, which affects [O]/[O3] (through ozone photolysis) and the ozone production rate (through oxygen photolysis).
著者
SHIBATA Kiyotaka NAOE Hiroaki
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2022-001, (Released:2021-09-30)
被引用文献数
1

Decadal variations of the quasi-biennial oscillation (QBO) in the equatorial stratosphere are investigated, using the Singapore data and reanalysis data from 1950s to 2019/2020. It is found that the QBO is decadally modulated in the amplitude as well as in the period. These two decadal variations are positively correlated with each other after 1980s, while they show approximately negative correlation before 1980s. In the time series of the QBO amplitude from 1950s to 2014, there are four maxima (QBOmax) around 1967, 1983, 1995, and 2005, and three minima (QBOmin) around 1973, 1988, and 2000. Composite analyses of QBOmax and QBOmin based on these extrema reveal that the decadal amplitude variations have maximum amplitude of about 3 m s−1 at 20 hPa in the vertical. In the horizontal structure there appear off-equator extrema of about 3.5 m s−1 around 5°N at 20 hPa, while at 50 hPa extrema of about 1.8 m s−1 are situated around 5°S. The decadal amplitude variations of the QBO are closely and positively correlated with the decadal components of Niño 3.4 sea surface temperature anomalies (SSTa) and Pacific decadal oscillation (PDO) index, suggesting that the tropical SSTa in the central Pacific substantially influences the QBO in the decadal time-scales.