著者
Minako Okukawa Yuika Yoshizaki Mayu Tanaka Shigekazu Yano Yoshimune Nonomura
出版者
Japan Oil Chemists' Society
雑誌
Journal of Oleo Science (ISSN:13458957)
巻号頁・発行日
pp.ess20362, (Released:2021-05-07)
被引用文献数
4

1,2-Alkanediols are characteristic cosmetic ingredients because these moisturizers exhibit the antibacterial activity against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). However, the antimicrobial behavior in mixed systems containing several active ingredients is unclear because previous reports focus on an antibacterial system containing only 1,2-alkanediol. In this study, the minimal inhibitory concentration (MIC) and the fractional inhibitory concentration (FIC) were evaluated for 1,2-dodecanediol/lactic acid, 1,2-dodecanediol/myristic acid, 1,2-dodecanediol/methylparaben, and 1,2-dodecanediol/isopropyl methylphenol mixed systems to show the effect of the addition of other antimicrobial components to 1,2-dodecanediol. The antibacterial property of 1,2-dodecanediol/lactic acid mixed system was almost similar compared to 1,2-dodecanediol monomeric system. On the other hand, the antimicrobial activity of 1,2-dodecanediol against S. epidermidis was inhibited in the 1,2-dodecanediol/myristic acid mixed system. Because the selective antimicrobial activity of myristic acid against S. aureus was demonstrated in the mixed system. The present findings are useful for designing formulations of cosmetics and body cleansers containing 1,2-dodecanediol.
著者
Minako Okukawa Takamasa Watanabe Maki Miura Hiroyuki Konno Shigekazu Yano Yoshimune Nonomura
出版者
Japan Oil Chemists' Society
雑誌
Journal of Oleo Science (ISSN:13458957)
巻号頁・発行日
pp.ess19074, (Released:2019-07-10)
被引用文献数
7

1,2-Alkanediol exhibits antibacterial activity against several bacteria and yeast. However, few studies have reported antimicrobial tests on skin microbiome. Bacterial microbiome on the skin surface include Staphylococcus aureus (S. aureus), which causes rough skin and inflammation in atopic dermatitis and Staphylococcus epidermidis (S. epidermidis), which enhances innate immunity. In this study, the minimal inhibitory concentration (MIC) was evaluated for 1,2-alkanediol comprising 4–12 carbon atoms against S. aureus and S. epidermidis. 1,2-Alkanediol comprising 6–12 carbon atoms exhibited antimicrobial activity against both species of Staphylococcus. The antibacterial activity depended on the alkyl chain length. In addition, the minimum bactericidal concentration (MBC) on agar was evaluated for 1,2-alkanediol comprising 6–12 carbon atoms. 1,2-Octanediol and 1,2-decanediol exhibited significant bactericidal activity.
著者
Takamasa Watanabe Yoshiaki Yamamoto Maki Miura Hiroyuki Konno Shigekazu Yano Yoshimune Nonomura
出版者
Japan Oil Chemists' Society
雑誌
Journal of Oleo Science (ISSN:13458957)
巻号頁・発行日
pp.ess18220, (Released:2019-02-13)
被引用文献数
17

Bacterial flora on the skin surface contains Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) which causes rough skin and atopic dermatitis and enhances innate immunity, respectively. In this study, minimum inhibitory concentration (MIC) was evaluated for six saturated fatty acids and two unsaturated fatty acids against S. aureus and S. epidermidis. The antimicrobial behavior in the liquid medium was categorized into three groups. The first was the selective antibacterial activity group comprising myristic acid (C14:0 fatty acid), palmitoleic acid (C16:1 fatty acid), and oleic acid (C18:1 fatty acid) and preferentially displayed antimicrobial activity for S. aureus (group 1). C16:1 fatty acid displayed high antimicrobial activity only for S. aureus. The second was the non-selective antibacterial activity group which displayed antibacterial activity for both Staphylococci (group 2). Caprylic acid (C8:0 fatty acid), capric acid (C10:0 fatty acid), and lauric acid (C12:0 fatty acid) comprised group 2. The third was the non-antibacterial activity group which did not show significant antimicrobial activity (group 3). Bactericidal activities were confirmed for C12:0 fatty acid and C16:1 fatty acid by evaluating the minimum bactericidal concentration (MBC) on the agar medium. C12:0 fatty acid displayed non-selective bactericidal behavior against S. aureus and S. epidermidis when the fatty acid concentration was above 250 μg mL–1. These findings suggest that C16:1 fatty acid has the potential to be used as a detergent in skin care and medical products because it can selectively kill only S. aureus.
著者
Yuitsu Otsuka Koki Sato Shigekazu Yano Haruki Kanno Wasana Suyotha Hiroyuki Konno Koki Makabe Toki Taira
出版者
The Japanese Society of Applied Glycoscience
雑誌
Journal of Applied Glycoscience (ISSN:13447882)
巻号頁・発行日
pp.jag.JAG-2022_0002, (Released:2022-04-14)
被引用文献数
3

The GH-16 type β-1,3-glucanase (BgluC16MK) gene of Lysobacter sp. MK9-1 was cloned to study its antifungal activities. BgluC16MK displays amino acid sequence similarity with GluC from L. enzymogenes strain N4-7. BgluC16MK includes a signal sequence, a catalytic domain and carbohydrate-binding module family 6-type β-glucan binding domain (B-GBD). The expression of the BgluC16MK gene in Escherichia coli without the signal sequence resulted in antifungal activity at a dose of 0.6–0.8 nmol/disk. However, BgluC16MK displayed antifungal activity at a dose of 0.025 nmol/disk in combination with Chi19MK. Substrate-specific assay revealed that purified BgluC16MK hydrolyzed insoluble curdlan more readily than the soluble substrate. Furthermore, to explore the binding selectivity of B-GBD of BgluC16MK, we constructed a fusion protein (B-GBD-GFP) using the B-GBD and green fluorescent protein. The activity of the fusion protein against various substrates indicates that B-GBD was selective for glucans with β-1,3-linkages. An additional study demonstrated the binding ability of BGBD-GFP to the cell-wall of living fungi, such as T. reesei and Aspergillus oryzae. These findings suggest that BgluC16MK can be utilized to generate antifungal enzyme preparations and that the fusion protein B-GBD-GFP can be used to identify the fungal cell surface structure using β-glucans.
著者
Minako Okukawa Yuika Yoshizaki Shigekazu Yano Yoshimune Nonomura
出版者
Japan Oil Chemists' Society
雑誌
Journal of Oleo Science (ISSN:13458957)
巻号頁・発行日
pp.ess21090, (Released:2021-08-06)
被引用文献数
3

Fatty acids and their derivatives are interesting cosmetic ingredients because they show the selective antibacterial activity against Staphylococcus aureus (S. aureus). However, the antibacterial activity in mixed systems containing several active ingredients is unclear because previous studies focused antibacterial systems containing one kind of fatty acid. In the present study, the minimal inhibitory concentration (MIC) and the fractional inhibitory concentration (FIC) were evaluated for myristic acid/lauric acid, myristic acid/palmitoleic acid, and myristic acid/lactic acid mixed systems to show the effect of the coexisting components on the selective antibacterial activity of myristic acid. In the myristic acid/palmitoleic acid mixed system, the antibacterial activity against S. aureus was enhanced by additive effect, whereas the antibacterial activity was not observed against S. epidermidis. On the other hand, the myristic acid/lauric acid mixed system showed antibacterial activity against S. epidermidis: Lauric acid impaired the selectivity of antibacterial activity of myristic acid. These results suggest that the selective activity of myristic acid varies with the additives. The present findings are useful for designing formulations of cosmetics and body cleansers containing myristic acid.