著者
Minako Okukawa Takamasa Watanabe Maki Miura Hiroyuki Konno Shigekazu Yano Yoshimune Nonomura
出版者
Japan Oil Chemists' Society
雑誌
Journal of Oleo Science (ISSN:13458957)
巻号頁・発行日
pp.ess19074, (Released:2019-07-10)
被引用文献数
7

1,2-Alkanediol exhibits antibacterial activity against several bacteria and yeast. However, few studies have reported antimicrobial tests on skin microbiome. Bacterial microbiome on the skin surface include Staphylococcus aureus (S. aureus), which causes rough skin and inflammation in atopic dermatitis and Staphylococcus epidermidis (S. epidermidis), which enhances innate immunity. In this study, the minimal inhibitory concentration (MIC) was evaluated for 1,2-alkanediol comprising 4–12 carbon atoms against S. aureus and S. epidermidis. 1,2-Alkanediol comprising 6–12 carbon atoms exhibited antimicrobial activity against both species of Staphylococcus. The antibacterial activity depended on the alkyl chain length. In addition, the minimum bactericidal concentration (MBC) on agar was evaluated for 1,2-alkanediol comprising 6–12 carbon atoms. 1,2-Octanediol and 1,2-decanediol exhibited significant bactericidal activity.
著者
Takamasa Watanabe Yoshiaki Yamamoto Maki Miura Hiroyuki Konno Shigekazu Yano Yoshimune Nonomura
出版者
Japan Oil Chemists' Society
雑誌
Journal of Oleo Science (ISSN:13458957)
巻号頁・発行日
pp.ess18220, (Released:2019-02-13)
被引用文献数
18

Bacterial flora on the skin surface contains Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) which causes rough skin and atopic dermatitis and enhances innate immunity, respectively. In this study, minimum inhibitory concentration (MIC) was evaluated for six saturated fatty acids and two unsaturated fatty acids against S. aureus and S. epidermidis. The antimicrobial behavior in the liquid medium was categorized into three groups. The first was the selective antibacterial activity group comprising myristic acid (C14:0 fatty acid), palmitoleic acid (C16:1 fatty acid), and oleic acid (C18:1 fatty acid) and preferentially displayed antimicrobial activity for S. aureus (group 1). C16:1 fatty acid displayed high antimicrobial activity only for S. aureus. The second was the non-selective antibacterial activity group which displayed antibacterial activity for both Staphylococci (group 2). Caprylic acid (C8:0 fatty acid), capric acid (C10:0 fatty acid), and lauric acid (C12:0 fatty acid) comprised group 2. The third was the non-antibacterial activity group which did not show significant antimicrobial activity (group 3). Bactericidal activities were confirmed for C12:0 fatty acid and C16:1 fatty acid by evaluating the minimum bactericidal concentration (MBC) on the agar medium. C12:0 fatty acid displayed non-selective bactericidal behavior against S. aureus and S. epidermidis when the fatty acid concentration was above 250 μg mL–1. These findings suggest that C16:1 fatty acid has the potential to be used as a detergent in skin care and medical products because it can selectively kill only S. aureus.