著者
Kazufumi Nagata Yasunori Nonoue Kazuki Matsubara Ritsuko Mizobuchi Nozomi Ono Taeko Shibaya Kaworu Ebana Eri Ogiso-Tanaka Takanari Tanabata Kazuhiko Sugimoto Fumio Taguchi-Shiobara Jun-ichi Yonemaru Yusaku Uga Atsunori Fukuda Tadamasa Ueda Shin-ichi Yamamoto Utako Yamanouchi Toshiyuki Takai Takashi Ikka Katsuhiko Kondo Tomoki Hoshino Eiji Yamamoto Shunsuke Adachi Jian Sun Noriyuki Kuya Yuka Kitomi Ken Iijima Hideki Nagasaki Ayahiko Shomura Tatsumi Mizubayashi Noriyuki Kitazawa Kiyosumi Hori Tsuyu Ando Toshio Yamamoto Shuichi Fukuoka Masahiro Yano
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
vol.73, no.3, pp.332-342, 2023 (Released:2023-07-27)
参考文献数
64
被引用文献数
1

Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the japonica background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous japonica background to be validated.
著者
Chihaya Fukai Takanari Tanabata Tomoko Nishizawa Mikiko Koizumi Keisuke Kutsuwada Miyako Kusano
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
pp.22.1107a, (Released:2023-01-23)
参考文献数
22

Nitrogen (N) fertilization is one of the most crucial factors that contribute to increasing food production requiring the generation of rice cultivars with improved N use efficiency (NUE) to maintain yield during low N fertilizer application. To assay NUE extent, we developed a screening system to evaluate shoot growth of each rice cultivar under gradient changes in N concentrations. This system comprises a gradient hydroponic culture and growth visualization systems. The former allows gradient changes in ammonium concentrations, while the latter records the increment in shoot length of individual rice seedlings at given time periods using a fixed-point camera. We chose 69 cultivars including two controls (Oryza sativa L. cv. Nipponbare [WRC01] and Kasalath [WRC02]) from the World Rice Core Collection to investigate shoot growth responses under ammonium-sufficient, ammonium-limited, and low ammonium concentration gradients without transplanting stress. We observed three growth patterns in response to different ammonium concentrations. Subsequently, we selected three representative cultivars (Kasalath, WRC03, and WRC05) for the characteristic responses under the different ammonium environments. Distinct expression patterns of glutamine synthetase 1;2 (OsGS1;2) but OsGS1;1 were observed in response to varying ammonium concentration regimes, indicating that the expression patterns of OsGS1;2 may be a growth marker in terms of shoot growth when transitioning from ammonium-limited to low ammonium concentrations. This system with the level of OsGS1;2 allows us to screen for candidate cultivars that return high NUE in low N environments.