著者
Takumi Nishiuchi Makoto Kimura Kazuhiro Sato
出版者
日本マイコトキシン学会
雑誌
マイコトキシン (ISSN:02851466)
巻号頁・発行日
vol.65, no.2, pp.143-147, 2015-07-31 (Released:2015-09-01)
参考文献数
16

Phytopathogenic fungi Fusarium species are etiological agents of Fusarium head blight (FHB) and produce trichothecene mycotoxins such as deoxynivalenol (DON) and nivalenol (NIV) in cereals especially barley and wheat. Trichothecenes inhibit the protein synthesis in eukaryotic ribosomes. Therefore, trichothecene-contaminated cereals often cause foodborne illness such as immunosuprression, vomiting, and diarrhea in human and livestocks. Trichothecenes are also phytotoxins and act as effectors to promote infection in host plants. Based on visible disease symptoms, we selected 15 FHB-resistant lines of barley. When these resistant lines and susceptible controls were inoculated with conidia of F. asiaticum, the mycotoxin (NIV) contaminations of resistant two lines were less than half of those of susceptible controls. Furthermore, we performed comparative analysis of global gene expression profiles between these FHB-resistant (low NIV accumulation) lines vs. susceptible controls. A number of genes including the glutathione S-transferase (HvGST13) and glutathione reductase (HvGR2) were specifically up-regulated in the FHB-resistant lines. It is likely that these two genes are involved in the detoxification of NIV by NIV-GSH conjugation in barley. Therefore, we are studying these genes as candidates of trichothecene-detoxifing genes. This study may contributes to the understanding molecular mechanism of trichothecene detoxification in cereals.
著者
Toshinori Tanaka Nobukazu Tanaka Yukio Nagano Hirotaka Kanuka Daisuke S. Yamamoto Natsuko Yamamoto Eiji Nanba Takumi Nishiuchi
出版者
Academic Consociation of Environmental Safety and Waste Management, Japan
雑誌
環境と安全 (ISSN:18844375)
巻号頁・発行日
pp.E19SC0801, (Released:2019-10-07)
参考文献数
12

Gene drive is a powerful system that can spread a desirable genetic trait into an entire species and/or population of a certain region,bypassing Mendelian rules of inheritance. Recently, one of the genome editing technologies, CRISPR/Cas, has been developed, making it easier to use gene drive in many different organisms. However, gene drive has potential risks that impact genetic diversity when organisms produced by CRISPR/Cas-based Gene Drive Technology (CCGDT) are accidentally released; therefore, a high degree of prudence is required when CCGDT is used.In Japan, a Working Group on Gene Drive has been established in the Academic Association for Promotion of Genetic Studies (AAPGS), and a Statement on the Handling of Gene Drive was issued to the public including research institute across Japan, after comprehensive and extensive discussions by the working group in order to reduce risks posed by CCGDT. A national-wide survey on CCGDT was implemented. The survey revealed that those in managerial positions including members and secretariats of institutional review boards on recombinant DNA, and biosafety officers are conscious of CCGDT, and efforts to grasp experimental plans involving CCGDT are made by utilizing an application form for recombinant DNA experiment. In contrast, potential risks of CCGDT are not understood by many researchers. All stakeholders need to disseminate potential risks and preventive measures regarding CCGDT to all researchers who may wish to use this technology. Researchers should use CCGDT upon understanding its potential risks and taking necessary measures. This report refers to how safety measures for CRISPR/Cas-based gene drive technology which has potential risks to ecological system has been discussed and results of national-wide questionnaire survey on gene drive in Japan based on the poster presentation at the Asian Conference on Safety & Education in Laboratory 2018.