著者
Takuya Suzaki
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
vol.73, no.1, pp.70-75, 2023 (Released:2023-04-15)
参考文献数
50
被引用文献数
1

During the course of plant evolution, leguminous and a few plants species have established root nodule symbiosis (RNS), one of the nitrogen nutrient acquisition strategies based on mutual interaction between plants and nitrogen-fixing bacteria. In addition to its useful agronomic trait, RNS comprises a unique form of plant lateral organogenesis; dedifferentiation and activation of cortical cells in the root are induced upon bacterial infection during nodule development. In the past few years, the elucidations of the significance of NODULE INCEPTION transcription factor as a potentially key innovative factor of RNS, the details of its function, and the successive discoveries of its target genes have advanced our understanding underlying molecular mechanisms of nodule organogenesis. In addition, a recent elucidation of the role of legume SHORTROOT-SCARECROW module has provided the insights into the unique properties of legume cortical cells. Here, I summarize such latest findings on the neofunctionalized key players of nodule organogenesis, which may provide clue to understand an evolutionary basis of RNS.
著者
Hanna Nishida Takuya Suzaki
出版者
The Genetics Society of Japan
雑誌
Genes & Genetic Systems (ISSN:13417568)
巻号頁・発行日
pp.22-00104, (Released:2023-01-11)
参考文献数
18
被引用文献数
2

Root nodule symbiosis is promoted in nitrogen-deficient environments, whereas host plants cease the symbiosis if they can obtain enough nitrogen from their surrounding soil. In Lotus japonicus, recent reports indicate that two NODULE INCEPTION (NIN)-LIKE PROTEIN (NLP) transcription factors, LjNLP1 and LjNLP4, play important roles in the regulation of gene expression and nodulation in response to nitrate. To characterize the redundant and unique roles of LjNLP1 and LjNLP4 in more detail, we reanalyzed our previous transcriptome data using Ljnlp1 and Ljnlp4 mutants. Although downstream genes of LjNLP1 and LjNLP4 mostly overlapped, we found that nitrate-induced expression of NITRATE TRANSPORTER 2 (LjNRT2) family genes was specifically regulated by LjNLP1. In contrast, LjNRT1 gene family expression was regulated by both LjNLP1 and LjNLP4. Therefore, it is likely that the two NLPs play distinct roles in the regulation of nitrate transport.
著者
Mina Ohtsu Daisuke Kurihara Yoshikatsu Sato Takuya Suzaki Masayoshi Kawaguchi Daisuke Maruyama Tetsuya Higashiyama
出版者
日本メンデル協会、国際細胞学会
雑誌
CYTOLOGIA (ISSN:00114545)
巻号頁・発行日
vol.82, no.3, pp.251-259, 2017-06-25 (Released:2017-09-06)
参考文献数
35

Nematode infection of plant roots is a paradigm of host–parasite interactions. Although nematodes can be labeled with fluorescent dyes, migration of the worms into the deep regions of host roots makes them difficult to track. Here we report the use of two fluorescent dyes, FM4-64 and SYBR green I, to intensely label the soybean cyst nematode (SCN) Heterodera glycines for one week in host plants. Continuous monitoring of the labeled SCN juveniles was achieved with two-photon microscopy. Additionally, we developed a transient transformation system consisting of the non-model leguminous plant (fabaceous) roots, Astragalus sinicus and Agrobacterium rhizogenes to observe the cellular structures of the plant during SCN infection. By the combined use of fluorescent dyes and two-photon microscopy, clear images of infecting SCNs were obtained even in deep regions of A. sinicus roots. The fluorescent labeling described herein can also be used in detailed monitoring of the infection processes of other non-model nematodes, as well as the associated morphological changes in the host plant roots.