著者
Natsuko SUGIURA Kazuhiko OCHIAI Toshiaki YAMAMOTO Takuya KATO Yoshi KAWAMOTO Toshinori OMI Shin-ichi HAYAMA
出版者
JAPANESE SOCIETY OF VETERINARY SCIENCE
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
vol.82, no.4, pp.479-482, 2020 (Released:2020-04-09)
参考文献数
29
被引用文献数
1

We analyzed the genotypes of three pregnant females and their litters to investigate the phenomenon of multiple paternity in wild raccoon dogs (Nyctereutes procyonoides) using 17 microsatellite markers. If a female has mated with only one male during estrus, then the maximum number of paternal alleles will not exceed two among littermates with the same father. The results revealed two out of three litters had three or four paternal alleles at one or five microsatellite loci. Therefore, the female had mated with more than one male during estrus. To the best of our knowledge, the present study is the first to report the possibility of multiple paternity in wild raccoon dogs.
著者
Kei SAKAGUCHI Ehab Mahmoud MOHAMED Hideyuki KUSANO Makoto MIZUKAMI Shinichi MIYAMOTO Roya E. REZAGAH Koji TAKINAMI Kazuaki TAKAHASHI Naganori SHIRAKATA Hailan PENG Toshiaki YAMAMOTO Shinobu NANBA
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
IEICE TRANSACTIONS on Communications (ISSN:09168516)
巻号頁・発行日
vol.E98-B, no.10, pp.1932-1948, 2015-10-01

Millimeter-wave (mmw) frequency bands, especially 60GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is distributed antenna type architecture to realize centralized coordination, while the other is autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.