著者
Le Duc Takuya Kawabata Kazuo Saito Tsutao Oizumi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.17, pp.41-47, 2021 (Released:2021-03-08)
参考文献数
21
被引用文献数
8 15

Forecast performances of the July 2020 Kyushu heavy rain have been revisited with the aim of improving the forecasts for this event. While the Japan Meteorological Agency's (JMA) deterministic forecasts were relatively good, the JMA's ensemble forecasts somehow missed this event. Our approach is to introduce flow-dependence into assimilation by running a 1000-member local ensemble transform Kalman filter (LETKF1000) to extract more information from observations and to better quantify forecast uncertainties. To save computational costs, vertical localization is removed in running LETKF1000. Qualitative and quantitative verifications show that the LETKF1000 forecasts outperform the operational forecasts both in deterministic and probabilistic forecasts.Rather than a trick to save computational costs, removal of vertical localization is shown to be the main contribution to the outperformance of LETKF1000. If vertical localization is removed, forecasts with similar performances can be obtained with 100 ensemble members. We hypothesize that running ensemble Kalman filters with around 1000 ensemble members is more effective if vertical localization is removed at the same time. Since this study examines only one case, to assess benefit of removing vertical localization rigorously when the number of ensemble members is around 1000, a larger set of cases needs to be considered in future.
著者
Kazuo Saito Takumi Matsunobu Tsutao Oizumi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.18, pp.81-87, 2022 (Released:2022-04-25)
参考文献数
26
被引用文献数
2

As a complement work to the authors' previous studies, we examined the pre-typhoon rainfalls (PRE) ahead of typhoon T0918 (Melor) in October 2009. The influence of moistening in the upper atmosphere induced by the northward ageostrophic winds on PRE precipitation was examined by a sensitivity experiment using a cloud resolving model with a horizontal resolution of 2 km. The cloud resolving simulation showed a large impact of the water vapor in the upper atmosphere on the precipitation over western Japan. In the sensitivity experiment where the moisture in the middle and upper layers was reduced over the area off the south coast of western Japan, the water vapor reduction area was advected northward, and the snow in the middle and upper layers and the cloud ice in the upper layer decreased, reducing the rain below the melting level. The intrusion of drying air into the upper atmosphere reduced the thickness of the moist absolutely unstable layer (MAUL), and the maximum intensity of convective updrafts decreased by about 10% in the test experiment. In this case, the increase of rain in PRE was primarily caused by the deep northward water vapor transport which yielded a large amount of condensation in the middle and upper layers, and change of moist instability in the upper atmosphere subsidiarily enhanced the convective updrafts.
著者
Kazuo Saito Takumi Matsunobu Tsutao Oizumi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2022-014, (Released:2022-04-06)
被引用文献数
2

As a complement work to the authors' previous studies, we examined the pre-typhoon rainfalls (PRE) ahead of typhoon T0918 (Melor) in October 2009. The influence of moistening in the upper atmosphere induced by the northward ageostrophic winds on PRE precipitation was examined by a sensitivity experiment using a cloud resolving model with a horizontal resolution of 2 km. The cloud resolving simulation showed a large impact of the water vapor in the upper atmosphere on the precipitation over western Japan. In the sensitivity experiment where the moisture in the middle and upper layers was reduced over the area off the south coast of western Japan, the water vapor reduction area was advected northward, and the snow in the middle and upper layers and the cloud ice in the upper layer decreased, reducing the rain below the melting level. The intrusion of drying air into the upper atmosphere reduced the thickness of the moist absolutely unstable layer (MAUL), and the maximum intensity of convective updrafts decreased by about 10% in the test experiment. In this case, the increase of rain in PRE was primarily caused by the deep northward water vapor transport which yielded a large amount of condensation in the middle and upper layers, and change of moist instability in the upper atmosphere subsidiarily enhanced the convective updrafts.
著者
Tsutao OIZUMI Kazuo SAITO Junshi ITO Thoru KURODA Le DUC
出版者
Meteorological Society of Japan
雑誌
Journal of the Meteorological Society of Japan. Ser. II (ISSN:00261165)
巻号頁・発行日
pp.2018-006, (Released:2017-11-30)
被引用文献数
9

An intense rainband associated with Typhoon 1326 (Wipha) induced a fatal debris flow on Izu Oshima, Japan, on October 15-16, 2013. This rainband formed along a local front between the southeasterly humid warm air around the typhoon and the northeasterly cold air from the Kanto Plain. In this paper, the Japan Meteorological Agency Nonhydrostatic Model was optimized for the “K computer,” and ultra-high-resolution (500-250 m grid spacing) numerical simulations of the rainband with a large domain were conducted. Two of main factors that affect a numerical weather prediction (NWP) model, (1) grid spacing and (2) planetary boundary layer (PBL) schemes [Mellor–Yamada–Nakanishi–Niino (MYNN) and Deardorff (DD)], were investigated. Experiments with DD (Exps_DD: grid spacings of 2 km, 500 m, and 250 m) showed better reproducibility of the rainband position than experiments with MYNN (Exps_MYNN: grid spacings of 5 km, 2 km, and 500 m). Exps_DD simulated distinct convective-scale up/downdraft pairs on the southeast/northwest sides of the front, whereas those of Exps_MYNN were not clear. Exps_DD yielded stronger cold pools near the surface than did Exps_MYNN. These differences in the boundary layer structures likely had a large impact on the position of the front and the associated rainband. Exps_DD with the 500-m grid spacing showed the best precipitation performance according to the Fractions Skill Score. To check other factors of the precipitation forecast, model domain sizes, lateral boundary conditions in nesting simulations, and terrain representations were investigated. In the small domain experiments, the rainband shapes were very different from the observations. In the experiment using a nesting procedure, the deterioration of the forecast performance was acceptably reduced. The model with fine terrains better reproduced the intense rain over the island. These results demonstrate that the ultra-high-resolution NWP model with a large domain has the possibility to improve predictions of heavy rain.
著者
Le Duc Takuya Kawabata Kazuo Saito Tsutao Oizumi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2021-007, (Released:2021-01-29)
被引用文献数
15

Forecast performances of the July 2020 Kyushu heavy rain have been revisited with the aim of improving the forecasts for this event. While the Japan Meteorological Agency's (JMA) deterministic forecasts were relatively good, the JMA's ensemble forecasts somehow missed this event. Our approach is to introduce flow-dependence into assimilation by running a 1000-member local ensemble transform Kalman filter (LETKF1000) to extract more information from observations and to better quantify forecast uncertainties. To save computational costs, vertical localization is removed in running LETKF1000. Qualitative and quantitative verifications show that the LETKF1000 forecasts outperform the operational forecasts both in deterministic and probabilistic forecasts.Rather than a trick to save computational costs, removal of vertical localization is shown to be the main contribution to the outperformance of LETKF1000. If vertical localization is removed, forecasts with similar performances can be obtained with 100 ensemble members. We hypothesize that running ensemble Kalman filters with around 1000 ensemble members is more effective if vertical localization is removed at the same time. Since this study examines only one case, to assess benefit of removing vertical localization rigorously when the number of ensemble members is around 1000, a larger set of cases needs to be considered in future.