著者
Chao Wen Zhixian Leng Yueping Chen Liren Ding Tian Wang Yanmin Zhou
出版者
Japan Poultry Science Association
雑誌
The Journal of Poultry Science (ISSN:13467395)
巻号頁・発行日
vol.58, no.2, pp.103-109, 2021 (Released:2021-04-25)
参考文献数
36
被引用文献数
10

The aim of this study was to evaluate the effects of dietary betaine (BET) on growth performance, redox state, and related gene expression in broilers under heat stress (HS). A total of 144 21-day-old male broiler chickens with similar body weights were assigned randomly to three treatments with six replicates (eight chickens per replicate cage). Broilers in the control (CON) group were kept at thermoneutral (TN, 22±1°C) conditions and fed a basal diet until they were 42 days of age. Broilers in the other two groups (defined as HS and HS + BET) were exposed to HS (34±1°C, 8 h/day) and fed the basal diet without or with 1000 mg/kg BET, respectively. Rectal and cockscomb temperature of broilers was increased (P<0.05) in HS and HS + BET groups compared with the CON group, whereas there was no difference between HS and HS + BET groups. Dietary BET supplementation restored (P<0.05) average daily gain (ADG) and average daily feed intake (ADFI) of broilers and reversed (P<0.05) the increase in serum alanine transaminase (ALT) activity and malondialdehyde (MDA) content in the liver tissue of broilers under HS. The HS + BET group had higher (P<0.05) activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) in the liver tissue and mitochondria than the HS group, and the same pattern was observed for glutathione (GSH) and GSH/glutathione disulphide (GSSG) in the liver tissue. The decreased mRNA levels of GPX1 and uncoupling protein (UCP) in the liver induced by HS were restored by BET supplementation. In conclusion, dietary BET supplementation can alleviate HS-induced hepatic and mitochondrial oxidative damage of broilers by regulating mRNA expressions of GPX1 and UCP.
著者
Ling Zheng Lin Wang Jie Qin Xiaolin Sun Tingting Yang Yuxin Ni Yanmin Zhou
出版者
硬組織再生生物学会
雑誌
Journal of Hard Tissue Biology (ISSN:13417649)
巻号頁・発行日
vol.24, no.1, pp.54-60, 2015 (Released:2015-01-20)
参考文献数
20
被引用文献数
1 10

The temperature-sensitive triblock copolymer poly-(D, L-lactic acid-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-PLGA (PLGA-PEG-PLGA) is an FDA-approved material that has the ability to provide a sustained release of drugs and/or proteins. Platelet-rich fibrin(PRF)is second generation platelet concentration that contains growth factors such as transforming growth factor-β1 (TGF-β1), platelet derived growth factor-AB (PDGF-AB), and insulin-like growth factor-I (IGF-I). These growth factors affect the migration and proliferation of diverse cell types, including endothelial cells, smooth muscle cells, and osteoblast-like cells. This study sought to combine the hydrogel into scaffolds in order to serve as a sustained release system for PRF-derived growth factors. Poly (lactic-co-glycolic) acid (PLGA) and nano-hydroxyapatite (nHA) were used to prepare the hydrogel-containing scaffolds with the PRF-derived growth factors. We then investigated the effects of the hydrogel on modulating the activity of osteoblasts in vitro. We indicated that the hydrogel (Gel) was well-distributed in the inner surface of scaffolds, which themselves exhibited relatively interconnected pores with uniform sizes. The addition of the hydrogel didn’t affect their inherently high porosity. In vitro release tests indicated that the system containing nHA/PLGA/Gel/PRF provided for a slow and sustained release of PRF-derived growth factors. The results from our in vitro studies indicated that the MG63 cells cultured with both scaffold media extracts did not appear to have cytotoxic responses, and the nHA/PLGA/Gel/PRF system could improve the adhesion and proliferation of MG63 cells when compared to controls (p < 0.05). This in vitro evaluation suggests that the hydrogel-scaffold system is suitable as a model for bone tissue engineering, and that it allows for the sustained release of growth factors to improve bone reconstruction.