著者
Ryozo Imai Haruyasu Hamada Yuelin Liu Qianyan Linghu Yuya Kumagai Yozo Nagira Ryuji Miki Naoaki Taoka
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.37, no.2, pp.171-176, 2020-06-25 (Released:2020-06-25)
参考文献数
27
被引用文献数
31

Transformation is a key step in modern breeding technology that involves genome editing. The requirement for in vitro tissue culture and regeneration hampers application of this technology to commercially important varieties of many crop species. To overcome this problem, we developed a simple and reproducible in planta transformation method in wheat (Tritticum aestivum L.). Our in planta particle bombardment (iPB) method utilizes the shoot apical meristem (SAM) as a target tissue. The SAM contains a subepidermal cell layer termed L2, from which germ cells later develop during floral organogenesis. The iPB method can also be used for genome editing through transient CRISPR/Cas9 expression or direct delivery of the CRISPR/Cas9 ribonucleoprotein. In this review, we describe the iPB technology and provide an overview of its current and future applications in plant transformation and genome editing.
著者
Naoyuki Umemoto Shuhei Yasumoto Muneo Yamazaki Kenji Asano Kotaro Akai Hyoung Jae Lee Ryota Akiyama Masaharu Mizutani Yozo Nagira Kazuki Saito Toshiya Muranaka
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.40, no.3, pp.211-218, 2023-09-25 (Released:2023-09-25)
参考文献数
19
被引用文献数
1

Genome editing is highly useful for crop improvement. The method of expressing genome-editing enzymes using a transient expression system in Agrobacterium, called agrobacterial mutagenesis, is a shortcut used in genome-editing technology to improve elite varieties of vegetatively propagated crops, including potato. However, with this method, edited individuals cannot be selected. The transient expression of regeneration-promoting genes can result in shoot regeneration from plantlets, while the constitutive expression of most regeneration-promoting genes does not result in normally regenerated shoots. Here, we report that we could obtain genome-edited potatoes by positive selection. These regenerated shoots were obtained via a method that combined a regeneration-promoting gene with the transient expression of a genome-editing enzyme gene. Moreover, we confirmed that the genome-edited potatoes obtained using this method did not contain the sequence of the binary vector used in Agrobacterium. Our data have been submitted to the Japanese regulatory authority, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and we are in the process of conducting field tests for further research on these potatoes. Our work presents a powerful method for regarding regeneration and acquisition of genome-edited crops through transient expression of regeneration-promoting gene.