著者
Yukiko Hirabayashi Shinjiro Kanae
出版者
水文・水資源学会/日本地下水学会/日本水文科学会/陸水物理研究会
雑誌
Hydrological Research Letters (ISSN:18823416)
巻号頁・発行日
vol.3, pp.6-9, 2009 (Released:2009-01-29)
参考文献数
7
被引用文献数
23 58

Flooding is one of the major risks anticipated to increase in association with anthropogenically induced climate change which is likely to intensify the global water cycle. Currently, 20 to 300 million people per year are affected by floods that threaten both social security and sustainable development. This study presents the first estimate of future populations at risk of flooding. Results indicate that in the case of 3°C warming from the average of 1980-1999, approximately 300 million people could be at risk even in years of relatively low flooding; this number corresponds to the number of people affected in a devastating flood year at present. If the temperature increase is greater than 3°C, the flood-affected population would likely be even larger. We suggest that approximately 2°C warming, rather than 3°C warming, should be considered the critical level of temperature increase.
著者
Yukiko Hirabayashi Haireti Alifu Dai Yamazaki ‪Gennadii Donchyts Yuki Kimura
出版者
Japan Society of Hydrology and Water Resources (JSHWR) / Japanese Association of Groundwater Hydrology (JAGH) / Japanese Association of Hydrological Sciences (JAHS) / Japanese Society of Physical Hydrology (JSPH)
雑誌
Hydrological Research Letters (ISSN:18823416)
巻号頁・発行日
vol.15, no.2, pp.37-43, 2021 (Released:2021-06-22)
参考文献数
23

Floods are major natural disasters that have considerable consequences worldwide. As the frequency and magnitude of flooding are expected to be affected by ongoing climate change, understanding their past changes is important for developing adequate adaptation measures. However, the limited spatiotemporal coverage of flood gauges hinders detection of changes in flooding, particularly in poorly gauged regions. Here, we propose a method using surface water data of river floodplain inundation as a proxy of the magnitude and frequency of flooding. Surface water data − Aqua Monitor which represented the probability linear trend changes in land and water surface area based on 30-m Landsat images between 1984–2000 and 2000–2013 was used in this study. The changes in water surface area over the floodplain obtained from Aqua Monitor showed high correspondence with historical trends observed or simulated annual maximum daily discharge, indicating the potential to detect changes in frequency and magnitude of flood from satellite data. In regions where changes could be measured with sufficient satellite images, 29% showed an increase in water surface area in the flood plain, 41% showed a decrease, and 30% showed small or no changes.
著者
Yukiko Hirabayashi Yong Zang Satoshi Watanabe Sujan Koirala Shinjiro Kanae
出版者
水文・水資源学会/日本地下水学会/日本水文科学会/陸水物理研究会
雑誌
Hydrological Research Letters (ISSN:18823416)
巻号頁・発行日
vol.7, no.1, pp.6-11, 2013 (Released:2013-03-09)
参考文献数
23
被引用文献数
10 38

We report a time series (1948–2100) of global-scale meltwater from mountain glaciers and ice caps (MGI) estimated by the global glacier model HYOGA2. HYOGA2 calculates the temporal fluctuation of the mass balance for 24,234 individual glaciers worldwide. It covers 90% of the total glacier area, except for glaciers in Greenland and Antarctica. HYOGA2 also accounts for regionally distributed changes in glacier area and altitude associated with glacier retreat and advance. By computation of individual glacier changes, future dissipation and glacier mass and area changes can be simulated in the model. The cumulative volume loss of water between 1948 and 2005 was estimated to be 25.9 ± 1.4 mm sea level equivalent (SLE). A future projection under a high-emission scenario demonstrated significant losses of water from MGI equivalent to 60.3 ± 7.9 mm SLE between 1948 and 2060 and 99.0 ± 14.9 mm SLE between 1948 and 2099.