著者
松岡 憲知 藁谷 哲也 若狭 幸
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.126, no.3, pp.369-405, 2017-06-25 (Released:2017-08-03)
参考文献数
221
被引用文献数
3 6

Physical rock weathering has been studied through laboratory experiments, field observations, and numerical modeling, but linking these approaches and applying the results to weathering features in the field are often problematic. We review recent progress in three weathering processes—frost shattering, thermal fracturing, and lightning strikes—and explore better approaches to linking weathering processes and products. New visual and sensor technologies have led to great advances in field monitoring of weathering of fractured bedrock and resulting rockfalls in cold mountains. Laboratory simulations successfully produce fractures resulting from segregational freezing in various intact rocks. Modelling approaches illustrate the long-term evolution of periglacial slopes well, but improvements are required to apply laboratory-derived criteria to frost weathering. The efficacy of thermal weathering, which has long been under debate, is now partly supported by laboratory and field evidence that cracking takes place when wild fires or artificial explosions lead to thermal shock. Rock fracturing due to strong radiation is also reevaluated from the presence of large cooling/warming rates and meridian cracks in rocks exposed to arid environments. Linking laboratory simulations and natural features, however, needs further field-based observations of thermal fracturing. Irregular fractures formed in boulders are often attributed to lightning strikes, despite rarely being witnessed. Artificial lightning in the laboratory produces radial cracks, marking the first step toward interpreting irregular fractures in the bedrock that are unlikely to originate from other weathering processes. Identifying the origins of fractured rocks in the field requires distinguishing between fracture patterns derived from these weathering processes.

言及状況

外部データベース (DOI)

Yahoo!知恵袋 (1 users, 1 posts)

一般的に考えらえているのは、永久凍土等の永久に凍結している氷を含む岩石が夏季に融けるようになると、その岩石の風化が進むということです。 その他、日射による風化、落雷の増大による風化の促進もあるようです。 次の論文が参考になると思います。 https://www.jstage.jst.go.jp/article/jgeography/126/3/126_126.369/_pdf

Twitter (7 users, 8 posts, 12 favorites)

(余談) なぜ南面崩壊が多いのかというと、こういうのが関係してるのかも。n万年単位の変化でしょうけど。(余談終) 《これらの研究は,日射によっても岩石が急速な温度変化に曝されて微小亀裂を形成し,熱衝撃破砕する可能性を示唆している。》 岩石の物理的風化 https://t.co/CwX4QbEAf0
J-STAGE Articles - 岩石の物理的風化 https://t.co/i6NLQiuJCw
J-STAGE Articles - 岩石の物理的風化 https://t.co/i6NLQiuJCw

収集済み URL リスト