- 著者
-
高橋 俊允
冨岡 亮太
山西 健司
- 出版者
- 一般社団法人電子情報通信学会
- 雑誌
- 電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 (ISSN:09135685)
- 巻号頁・発行日
- vol.110, no.476, pp.169-176, 2011-03-21
拡大しつつある話題のリアルタイムな検出は,ソーシャルネットワーキングサービスの普及などによる,リアルタイムなコミュニケーションの発展により重要性を増している.従来はデータが持つ自然言語情報の解析による話題検出が中心であったが,近年はインターネットの発展などによりコンテンツが多様化し,自然言語情報のみによる話題検出はより困難になってきている.そこで本研究ではソーシャルネットワーク上の投稿に対して,それらが持つリンク情報すなわちユーザ間の言及関係を用いた話題拡大の検出手法を提案する.リンク情報について確率モデルを設定し,それに基づく変化点検出によって話題の拡大を捉える.また,Twitterの実データを用いて実験を行い,キーワードの出現頻度による検出と比較した結果,話題拡大の検出に対する提案手法の有効性を確認することができた.