著者
斉藤 正貴 吉田 勝浩 中村 貴彦 駒村 正治 Masaki Saitoh Yoshida Katsuhiro Nakamura Takahiko Komamura Masaharu 東京農業大学大学院農学研究科農業工学 東京農業大学大学院農学研究科農業工学 東京農業大学地域環境科学部生産環境工学科 東京農業大学地域環境科学部生産環境工学科 Department of Agricultural Engineering Graduate School of Agriculture Tokyo University of Agriculture Department of Agricultural Engineering Graduate School of Agriculture Tokyo University of Agriculture Department of Bioproduction and Environment Engineering Faculty of Regional Environment Science Tokyo University of Agriculture Department of Bioproduction and Environment Engineering Faculty of Regional Environment Science Tokyo University of Agriculture
出版者
東京農業大学
雑誌
東京農業大学農学集報 (ISSN:03759202)
巻号頁・発行日
vol.49, no.4, pp.189-197,

小規模循環型農園においてヒトが継続的に生存していくために必要な要素と規模を明らかにすることを目的とし,資源循環シミュレーションモデルを作成した。モデル対象地を静岡県として,ヒト一人の栄養バランスを保つことを前提条件とした循環システムの構成要素を提示し,農作物の収量と農地・森林面積を試算した。結果は以下の通りとなった。1.構成要素 : ヒト,家禽,養魚,農作物,緑肥作物,水質浄化作物,淡水プランクトン,森林 2.農地面積 : 5.6a(5.6×10^2m^2)(ヒト住居,鶏舎,養殖池は除く) 3.森林面積 : 2.9a次に,正規分布による確率密度関数を用いて農作物の収量に対する信頼度を明確化し,農作物収量および農地面積を算出した。信頼度ごとに割り出した農地面積は以下の通りとなった。信頼度50% : 6.9a, 信頼度75% : 7.3a, 信頼度95% : 8.0aThe purpose of this study is to show the elements and amounts, which are required to maintain a man's life on a small-scale-recycling-oriented farm. A simulation was done to show how materials recycle in a system in Shizuoka, Japan. This simulation presumed that a man can maintain his own nutritional balance and showed the constituent elements of the system. After the necessary quantity of food was calculated, the necessary amount of yields for providing food was calculated. Then the farmland area and the amounts of manure for these crops were calculated. After that the forest area for providing manure was calculated. The following results were obtained : 1. Constituent elements : Man, Chicken, Fish, Crops, Green manure, Water purifying plants, Limnoplankton, Trees 2. The farmland area : 5.6×10^2m^2 (except for the man's house, henhouse and fishpond) 3. The forest area : 50% reliability : 2.9×10^2m^2 In addition, the reliability of the yields was made clear according to a probability density function and the farmland areas each were calculated according to the yields of each case, 50%, 75% and 95% reliability. The following results were obtained : 50% reliability : 6.9×10^2m^2, 75% reliability : 7.3×10^2m^2, 95% reliability : 8.0×10^2m^2