- 著者
-
伊藤 浩志
吉田 孝久
松本 実
- 出版者
- 一般社団法人 日本体育学会
- 雑誌
- 日本体育学会大会予稿集
- 巻号頁・発行日
- vol.68, pp.221_2, 2017
<p> ここ数年、多くのアクティビティートラッカーが発売され、スポーツでの活動量記録が手軽に行えるようになった。しかしながら、市販のアクティビティートラッカーは、競技スポーツのトレーニング記録には機能が不十分である。競技パフォーマンス向上にはトレーニング過程の最適化が必要であり、そのためにはトレーニング手段及びトレーニング負荷の客観的な記録と評価が重要である。本研究は、トレーニング記録の簡便化を実現するために、加速度センサーデータを用いたコンピュータによるトレーニング内容の自動判別の手法について検討する。</p><p> 大学陸上競技跳躍女子選手3名を対象に、3日間4セッションのトレーニング時に手首の3軸加速度を100Hzで計測した。同時に撮影した映像からトレーニング内容を読み取り、ランニング、スプリント走、跳躍運動、ドリル運動、補強運動、ストレッチング、歩行の7種のカテゴリー情報をセンサーデータに付加し、15時間分の教師データを作成した。これらのデータを用いて7層で構成される再帰型ディープニューラルネットワークの学習を行った。その結果、センサーデータから75%の精度で運動内容を判別することが可能であった。</p>