著者
面﨑 祐一 増山 直輝 能島 裕介 石渕 久生
出版者
Japan Society for Fuzzy Theory and Intelligent Informatics
雑誌
知能と情報 (ISSN:13477986)
巻号頁・発行日
vol.33, no.1, pp.531-536, 2021-02-15 (Released:2021-02-15)
参考文献数
10
被引用文献数
1

マルチラベル多目的ファジィ遺伝的機械学習は,進化型多目的最適化手法により識別器の識別性能最大化と複雑性最小化を同時に考慮したファジィ識別器の学習手法である.しかし,マルチラベル識別問題において,識別性能に対する尺度が複数存在し,各評価尺度に対して最適な識別器を獲得するためには識別器の学習を複数回実行する必要がある.そこで本研究では,一度の実行で複数の識別性能評価尺度に対して最適な識別器を同時に獲得する多数目的最適化への拡張を行う.数値実験では,多数目的化したことによる探索性能への影響を多目的最適化の場合と比較することで調査する.
著者
入江 勇斗 増山 直輝 能島 裕介 石渕 久生
出版者
日本知能情報ファジィ学会
雑誌
知能と情報 (ISSN:13477986)
巻号頁・発行日
vol.32, no.1, pp.512-517, 2020-02-15 (Released:2020-02-15)
参考文献数
6

近年の情報技術の急速な発展はデータの継続的な収集を可能とした.蓄積されるデータは重要な経済資源とみなされており,種類・量ともに日々増加する膨大なデータから人が容易に理解できる形式で知識を獲得する手法が研究されている.ファジィ遺伝的機械学習(GBML)は,言語的に解釈可能なファジィ識別器を設計する手法の一つである.しかし,ファジィGBMLの学習アルゴリズムは一括学習であり,未知のクラスに属するデータが継続的に与えられる状況での知識の獲得(クラス増分学習)を行うことが困難である.そこで本研究では,従来のファジィGBMLをクラス増分学習可能なアルゴリズムに拡張する.具体的には,クラス増加時に,i)未知クラスを識別するルールの再構成,ii)学習済みのクラスに属するデータの削減の2つの操作を従来のファジィGBMLに加える.数値実験結果より,提案手法が未知クラスを効率的に学習可能であることを示す.