著者
山口 仁一
出版者
早稲田大学
巻号頁・発行日
1997

制度:新 ; 文部省報告番号:甲1200号 ; 学位の種類:博士(工学) ; 授与年月日:1997-03-06 ; 早大学位記番号:新2453 ; 理工学図書館請求番号:2056
著者
山口 仁一
出版者
バイオメカニズム学会
雑誌
バイオメカニズム学会誌 (ISSN:02850885)
巻号頁・発行日
vol.30, no.3, pp.123-127, 2006-08-01
被引用文献数
1 2

近年,ロボットによる二足歩行実現技術は大きく進展を見せているが,その技術群の全体構成を外から知ることは困難であった.これは,同技術の進歩を担っていた組織が大学等から民間企業等にその主軸が移り,学会等での技術発表が積極的には行われなかったことに基因するものと思われる.しかしながら,年月が経ち,民間企業等における技術も,公開特許公報や特許公報としてその多くのものが公開されるようになってきた.そこで,本解説では,筆者とソニー株式会社が共有名義・共有権利持分で出願した,脚式移動ロボット関連の安定歩行実現技術について,資質を与える技術,体だけで動く技術,考えて動く技術に分類し,各技術を代表的な特許技術を例に挙げながらその全体構成を概説する.
著者
山口 仁一 高西 淳夫 加藤 一郎
出版者
The Robotics Society of Japan
雑誌
日本ロボット学会誌 (ISSN:02891824)
巻号頁・発行日
vol.11, no.4, pp.581-586, 1993-05-15 (Released:2010-08-25)
参考文献数
12
被引用文献数
8 28

We have been using the ZMP (Zero Moment Point) as a criterion to distinguish the stability of walking for a biped walking, robot which has a trunk. In this paper, we introduce a control method of dynamic biped walking stabilized by trunk motion compensating for the three-axis moment on an arbitrary planned ZMP. We developed a biped walking robot WL-12 RV (Waseda Leg-12 Refined V) and perfomed a walking experiment with WL-12 RV using the control method. As a result, we realized fast dynamic biped walking (walking speed 0.54 s/step and step length 0.3 m) on a flat floor. This walking speed is about 50 percent faster than that with WL-12 (Waseda Leg-12) which compensates for only the two-axis (pitch-axis and roll-axis) moment by trunk motion.
著者
山口 仁一 玄 相昊 西野 大助 井上 貞敏 曽我 英司 高西 淳夫
出版者
バイオメカニズム学会
雑誌
バイオメカニズム (ISSN:13487116)
巻号頁・発行日
vol.14, pp.261-271, 1998-11-25 (Released:2016-12-05)
参考文献数
18

Many groups are researching a biped walking robot, although they have different objectives in mind such as applications of modern control theory, the study of mechanisms, or practical use to medical fields. The authors and others are engaged in studies of biped walking robots, with "human form" as a key word, from two points of view: one is human engineering, and the other is toward the development of anthropomorphic robots. The authors and others have obtained the following results to date. In 1984, the authors and others succeeded in achieving a dynamic biped walking of 1.3 [s/step] by the use of a hydraulic biped walking robot, WL-10 RD (Waseda Leg-No.10 Refined Dynamic). From 1986 to 1994, the authors developed hydraulic biped walking robots of the WL-12 series that compensated for lower limbs moment using an upper body and realized not only fast dynamic biped walking (0.54 [s/step] with a step length 0.3 [m]) but also walking on an unknown surface. In 1995, the authors developed an electrical powered biped walking robot WL-13, in which each leg joint is driven antagonistically via a rotary-type, nonlinear spring mechanism, and realized quasi-dynamic walking (7.68 [s/step] with a 0.1 [m] step length). In the current research concerning a biped walking robot, however, there is no developed example of a life-size biped walking robot which can perform manipulation and locomotion by dynamically coordinating arms and legs. Therefore, the authors proposed the construction of a biped humanoid robot that has a hand-arm system, a head system with visual sensors, and antagonistic driven joints using a rotary-type non-linear spring mechanism, on the basis of WL-13. We designed and built it. In addition, as the first step to realize the dynamically coordinated motion of limbs and trunk, the authors developed a control algorithm and a simulation program that generates the trunk trajectory for a stable biped walking pattern even if the trajectories of upper and lower limbs are arbitrarily set for locomotion and manipulation respectively. Using this preset walking pattern with variable muscle tension references corresponding to swing phase and stance phase, the authors performed walking experiments of dynamic walking forward and backward, dynamic dance and carrying, on a flat level surface (1.28 [s/step] with a 0.15 [m] step length). As a result, the efficiency of our walking control algorithm and robot system was proven. In this paper, the mechanism of WABIAN and its control method are introduced.
著者
山口 仁一 高西 淳夫 加藤 一郎
出版者
日本ロボット学会
雑誌
日本ロボット学会誌 (ISSN:02891824)
巻号頁・発行日
vol.14, no.1, pp.67-74, 1996-01-15 (Released:2010-08-10)
参考文献数
16
被引用文献数
2

As the first stage of biped walking adapting to an unknown uneven surface using an anthropomorphic biped walking robot, this paper introduces a special foot mechanism with shock absorbing material that stabilizes biped walking and acquires position information on the landing surface. The new foot has three functions: (1) a function to obtain information on the position relative to a landing surface; (2) a function to absorb the shock of the foot's landing; (3) a function to stabilize changes in the support leg. Two units of the foot mechanism were produced, a biped walking robot WL-12 RVI that had the foot mechanism installed inside it was developed, and a walking experiment with WL-12 RVI was performed. As a result, decreased vibration around the pitch axis, decreased torque demands on ankle actuators on the pitch axis, increased dynamic biped walking success probability, and acquired landing surface information was achieved.