著者
中山 浩太郎 岩澤 有祐 黒滝 紘生 松尾 豊
雑誌
情報処理
巻号頁・発行日
vol.56, no.11, pp.1102-1109, 2015-10-15

Deep Learningが人工知能研究のブレークスルーとして研究者の注目を集め始めてから久しく,Google,Face-book,Baiduなどが積極的に研究開発に参加,DeepMindなどの強烈なインパクトを持った研究が行われるなど,発展著しい研究領域となった.これに伴い,ここ数年でTorch,Caffe,Pylearn2/Theanoなどの実装が急速に整備され,これらのライブラリを利用した研究も盛んに行われている.本稿では,Deep Learningの概要と,2015年における研究・開発の状況を主に実装面から俯瞰する.また,筆者らが開発しているGPUを利用した高速・高機能のSdA 実装「GeSdA」も紹介する.これからDeep Learningに関する研究を始める研究者や,利用を考えている読者の一助になれば幸いである.
著者
久保 静真 岩澤 有祐 松尾 豊
出版者
人工知能学会
雑誌
2018年度人工知能学会全国大会(第32回)
巻号頁・発行日
2018-04-12

本稿では、Generative adversarial networks(GANs)に基づく写真上の自動着せ替えの新しい手法であるSwapGANを提案する。Conditional Analogy GAN(CAGAN)は、GANに基づく自動着せ替えの手法として既に提案されているが、複雑なパターンの服の生成は難しい。衣類の領域を考慮することで、SwapGANはCAGANよりも服のパターンをよりよく反映させることが出来る。このSwapGANは、大規模なデータセットで訓練されたセグメンテーションのモデルを使用してして、写真上の人物の衣服の領域を最初に取得する。次に、取得した領域を用いて衣服部分を人間の画像から除去する。そして、空白領域に所望の衣服を描写する。このようにネットワークは新しい服を人の服の領域に適用出来るようになる。さらに、テスト時にCAGANで必要であった人物が元々着用している服の画像はSwapGANでは不要になる。
著者
久保 静真 岩澤 有祐 松尾 豊
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第32回全国大会(2018)
巻号頁・発行日
pp.4M103, 2018 (Released:2018-07-30)

本稿では、Generative adversarial networks(GANs)に基づく写真上の自動着せ替えの新しい手法であるSwapGANを提案する。Conditional Analogy GAN(CAGAN)は、GANに基づく自動着せ替えの手法として既に提案されているが、複雑なパターンの服の生成は難しい。衣類の領域を考慮することで、SwapGANはCAGANよりも服のパターンをよりよく反映させることが出来る。このSwapGANは、大規模なデータセットで訓練されたセグメンテーションのモデルを使用してして、写真上の人物の衣服の領域を最初に取得する。次に、取得した領域を用いて衣服部分を人間の画像から除去する。そして、空白領域に所望の衣服を描写する。このようにネットワークは新しい服を人の服の領域に適用出来るようになる。さらに、テスト時にCAGANで必要であった人物が元々着用している服の画像はSwapGANでは不要になる。
著者
岩澤 有祐 矢入 郁子 松尾 豊
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会論文誌 (ISSN:13460714)
巻号頁・発行日
vol.32, no.4, pp.A-GB5_1-12, 2017-07-01 (Released:2017-08-17)
参考文献数
23

This paper proposes a novel neural networks based model for learning user-independent features. In activity recognition using wearable sensors, user-independence of features could provide better user-generalization performance, enhance privacy protection, and both are important for using activity recognition techniques in a real-world scenario. However, designing such features is not an easy task, because it is not clear what kind of features become user-independent, and moreover, poor design of user-independence harms activity recognition performance.Hear, we propose User-Adversarial Neural Networks for automatically learning user-independent features. The proposed model considers an adversarial-user classifier in addition to a regular activity classifier in the training phase, and learn the features that help to distinguish the activities but obstruct to distinguish the users. In other words, the model explicitly penalizes representations for becoming user-dependent, while keeping activity recognition performance as much as possible. Our main result is an empirical validation on three activity recognition tasks regarding wearable sensor based activity recognition. The result shows the proposed model improves independence of features comparing with the regular deep convolutional neural networks in both qualitatively and quantitively. We also summarize future work for better user-generalization and privacy protection from the perspective of the representation learning.
著者
岩澤 有祐 矢入 郁子 松尾 豊
出版者
人工知能学会
雑誌
人工知能学会全国大会論文集 (ISSN:13479881)
巻号頁・発行日
vol.31, 2017

ドメイン不変な特徴の学習はユーザや環境などの入力ドメインの違いに依存しないモデル構築の方策の1つである.本稿では敵対的訓練を利用したドメイン不変な特徴の学習法を提案する.提案手法では特徴空間からドメインを分類する敵対的分類器を考慮し,敵対的分類器を騙すように訓練することで特徴量がドメインに独立になるように明示的に制約を加える.本発表では公開されたデータセットでの提案手法の有効性について報告する.
著者
上條 達也 石本 幸暉 松嶋 達也 岩澤 有祐 松尾 豊
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第37回 (2023) (ISSN:27587347)
巻号頁・発行日
pp.2G1OS21c01, 2023 (Released:2023-07-10)

人間は環境の構造を理解し,複数モダリティからなる感覚器官からの情報を処理することで実世界で様々なスキルを獲得できる.人間のように多様なスキルを自律的に獲得できる知能ロボットの実現を目指す上で,複数モダリティからなるセンサ情報から世界モデルを学習し,モデルベース強化学習を行う手法は,自然なアプローチである.本稿では,ロボットアームのPick and Placeタスクにおいて,世界モデルに基づくモデルベース強化学習手法であるDreamerアルゴリズムを用いて,実ロボットアームの手先に触覚センサを取り付け,観測に用いることで,学習にかかる時間が短縮されることを検証する.また,実ロボットを用いて深層強化学習によりマニピュレーションタスクを学習させる際の学習環境について考察を行う.
著者
中川 大海 岩澤 有祐 松尾 豊
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第33回全国大会(2019)
巻号頁・発行日
pp.1Q3J203, 2019 (Released:2019-06-01)

近年,教育と情報技術の融合が進む中で,生徒の過去の学習行動を元に習熟度を推定する,知識獲得予測(knowledge tracing)の研究が活発化している.オンライン教育サービスの普及によるデータの大規模化も伴い,深層学習の活用によって従来より高い精度での予測が可能になったことが知られているが,既存の深層学習を用いた手法はでいずれも知識特有の構造を十分に考慮したモデルが設計されておらず,モデルの予測精度や予測の解釈性・妥当性が損なわれている.本研究では,知識構造をグラフ表現を用いて定式化し,近年発展が進む,深層学習を用いてグラフを扱うGraph Neural Networkを拡張したモデルによって,これらの問題の解決を図る.実験では,提案手法が既存手法に比べて,高精度かつ妥当性と解釈性の高い予測を行えることを,オープンデータを用いて実証的に検証し,またデータから学習されたグラフ構造を分析することで,効率的な知識構造の設計に関して考察する.