著者
齊藤 亜由子 宮脇 和人 小松 瞭 巖見 武裕
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.84, no.865, pp.18-00263, 2018 (Released:2018-09-25)
参考文献数
20
被引用文献数
1

This paper describes the use of nine-axis motion sensors to evaluate the motion sensor position on the thigh and lower leg during walking. The motion sensors are mounted on a subject's body using adhesive tape. The muscles constantly relax or contract because of human movement. Therefore, joint angle estimation using motion sensors produces different accuracy depending on the position where the motion sensor is mounted. Evaluating the motion sensor position is important for improving the joint angle estimation accuracy. For this study, the authors used six nine-axis motion sensors and a 3D motion analysis system to assess walking exercise. Three motion sensors were mounted to the thigh; three were mounted to the lower leg. The knee joint angle was estimated using a sensor fusion algorithm that corrected the centrifugal acceleration and the tangential acceleration in the acceleration sensor output. We evaluated the accuracy of knee joint angle estimation by comparing the nine-axis motion sensor results and the 3D motion analysis system results. Results demonstrated the possibility of high-accuracy estimation when the motion sensor is attached to a position 50% or 75% from the upper end of the thigh and another sensor is attached to a position 25% or 50% from the upper end of the lower leg.
著者
小松 綜太 小松 瞭 巖見 武裕 加賀 望 山田 晋 斉藤 公男 島田 洋一
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.83, no.849, pp.16-00559-16-00559, 2017 (Released:2017-05-25)
参考文献数
19

Acetabular dysplasia describes an underdeveloped or shallow, upwardly sloping acetabulum, which may occur with varying degrees of deformity of the proximal femur such as excessive femoral neck anteversion, coxa valga or femoral neck cam deformity. Numerous stabilising procedures have been described, one of the first being the shelf acetabuloplasty. Shelf procedure improves coverage of the femoral head, without changing orientation of the acetabulum.This will improve the range of movement in the hip and protect the femoral head. In this study, we investigated the effect of shelf acetabuloplasty for load distribution of acetabular roof and femoral head using the finite element method (FEM). A three-dimensional (3D) generic musculoskeletal model was developed based on computed tomographic (CT) to estimate joint reaction force. As a result, we funded load distribution decreased on the top of the ace tabular rim and femoral head. Shelf acetabuloplasty may effective procedure for acetabular dysplasia because of improvement for load distribution.
著者
巖見 武裕 小松 瞭 大高 稿兵 三浦 弘樹 畠山 和利 島田 洋一 小林 義和
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.83, no.849, pp.16-00318-16-00318, 2017 (Released:2017-05-25)
参考文献数
42
被引用文献数
3

In this study, we constructed a novel three-dimensional trunk musculoskeletal model that included thoracolumbar intervertebral using data from computed tomography (CT) and magnetic resonance imaging (MRI). Characteristics of the model are as follows. Firstly, the thoracolumbar structure was modeled in detail (i.e., skeleton, muscle paths and muscle cross-section areas) from CT and MRI data. Secondly, new factors were included in this model such as intra-abdominal pressure and physiological trunk range of motion to calculate internal biological forces more accurately than in previous models. Thirdly, this musculoskeletal trunk model is an aid to analyzing dynamic motion. The aims of this study was to analyze detailed three-dimensional motion in healthy adults using this model, and to estimate internal biological forces, including spinal moment and muscle force in a standing position. The validation of this model used the calculated intradiscal pressure for the L4/L5 disc according to previous reports. This model is able to analyze spinal moments and trunk muscle force during static motions. The present study confirms that the moment curve of spinal can be generalized in the various postures. The model has been validated, and was able to analyze three-dimensional motion (i.e., combinational factors of rotation and flexion). As a result, this model is expected to have clinical applications.