著者
井上 真一 佐々木 紀幸 村上 恭二 藪下 和樹 鈴木 勝雄
出版者
The Japan Society of Naval Architects and Ocean Engineers
雑誌
日本造船学会論文集 (ISSN:05148499)
巻号頁・発行日
vol.1996, no.180, pp.1-11, 1996 (Released:2009-09-16)
参考文献数
10

The amplitude functions measured by wave analysis experiment for a ship model are expanded in Mathieu function series in order to obtain the informations of improving the hull form. The expansion gives sectional area curve of the model as assumed as a source generating the measured wave system in linear wave-making theory. The expansion coefficients correspond with the coefficients of Mathieu expansion of the assumed sectional area curve and give the strengths of wave pattern resistance components. In order to reduce the total wave resistance the sectional area curve components corresponding with the dominant wave resistance components is to be subtracted.The amplitude functions measured for three ship models are expanded in Mathieu function series and their wave resistance components are compared with each other at various Froude numbers. The direction of improving hull form obtained by the present method corresponds with the design philosophy of the three ship forms.
著者
永松 哲郎 児玉 良明 角川 明 高井 通雄 村上 恭二 石川 暁 上入佐 光 荻原 誠功 吉田 有希 鈴木 敏夫 戸田 保幸 加藤 洋治 池本 晶彦 山谷 周二 芋生 秀作 山下 和春
出版者
公益社団法人日本船舶海洋工学会
雑誌
日本造船学会論文集 (ISSN:05148499)
巻号頁・発行日
no.192, pp.15-28, 2002-12
参考文献数
11
被引用文献数
7 12

This paper is the second half of the report on the study on microbubbles carried out by the SR239 project of the Shipbuilding Research Association of Japan, and describes the full-scale experiment using "SEIUN MARU", a 116m-long training ship that belongs to the Institute for Sea Training. Using numerical analysis and the experimental data obtained in the preparatory study described in the first half of the report, the net energy saving of SEIUN MARU by microbubbles at 14kts was estimated to be 2%. In the full-scale experiment, the trajectory of the generated bubbles was observed using underwater TV cameras and was found to shift more upward than predicted. The local skin friction was measured at several locations on the hull surface, and the skin friction increase as well as decrease by the bubbles was measured. The local void ratio was measured at one point on the hull surface, and the bubbles were found to travel slightly away from the hull surface. The change of the ship speed and shaft horsepower by microbubbles was measured, and the decrease or increase of engine power at constant ship speed was analyzed. In the most cases of the experiment the ship speed decreased by the bubble injection, mainly due to the increase of ship resistance and the decrease of propeller efficiency caused by the bubbles going into the working propeller. But, by carefully choosing the bubble injection location and thus avoiding the bubble entrainment into the propeller, the 3% power saving at a constant speed of 14kts was obtained. By taking into account the power needed to inject bubbles against hydrostatic pressure due to water depth at the injection point, this corresponds to the net power saving of 2%. Thus the net power saving by microbubbles was measured on a full-scale ship for the first time in the world.