著者
松本 義久
出版者
公益社団法人 日本医学物理学会
雑誌
医学物理 (ISSN:13455354)
巻号頁・発行日
vol.34, no.2, pp.57-64, 2014 (Released:2015-03-06)
参考文献数
15

DNA double-strand break (DSB) is considered most deleterious among radiation-induced DNA damages and most relevant to the biological effects of radiation. In eukaryotic cells, DSB is repaired mainly through two pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). These repair pathways seem to play complementary roles. NHEJ is considered less accurate than HR, but HR is available only in late S and G2 phases in vertebrates. Recent studies elucidated how cells choose one from these two pathways depending on the circumstance: cell cycle phase, complexity of DNA damage and chromatin structure.
著者
橋本 優実 PANKAJ KAMDAR Radhika 松井 理 橋本 光正 松本 義久 岩淵 邦芳
出版者
Journal of Radiation Research 編集委員会
雑誌
日本放射線影響学会大会講演要旨集
巻号頁・発行日
vol.2011, pp.102, 2011

アポトーシスに陥った細胞において、XRCC4はカスパーゼ3あるいは7で切断され、DNA ligase IV結合領域を含むが核移行シグナルを欠いた35 kDaのN末断片(以下pN35)となることが知られている。本研究では、XRCC4断片化のアポトーシスにおける役割を調べた。<BR> マウスリンパ腫L5178Y細胞由来XRCC4欠損細胞株M10細胞をスタウロスポリン(以下STS)で処理してアポトーシスを誘導した。アポトーシスは、カスパーゼ3の活性化あるいはアポトーシス特異的DNA断片化(TUNEL法)を指標に検出した。<BR> M10細胞に野生型XRCC4を発現させた細胞株(M10-XRCC4)をSTS処理すると、pN35が検出されたが、カスパーゼで切断されない変異型XRCC4(XRCC4 D265A)を発現させた細胞株(M10-D265A)ではこの断片は検出されなかった。このときM10-XRCC4でのみ、アポトーシスの増強と、カスパーゼ3上流に位置するカスパーゼ8および9の活性化体の増加がみられた。STSによるアポトーシスに対する増強効果は、M10細胞にpN35を発現させても認められなかったが、核移行シグナルを付加したpN35を発現させると認められた。M10-XRCC4と M10-D265Aの両細胞において、 XRCC4とDNA ligase IVは、アポトーシスの進行に伴い核から核外へ移行した。<BR> 以上より、カスパーゼによるXRCC4のN末断片化はアポトーシスに必要であることが確かめられた。pN35は核内に存在する時にアポトーシス増強作用を発揮することが明らかとなった。アポトーシス増強の機序としては、pN35によるカスパーゼ8および9の活性化の促進が考えられた。一方、アポトーシスの進行に伴うXRCC4とDNA ligase IVの核外移行には、XRCC4のN末断片化は必要ないことが示された。<BR> なお、M10細胞は文部科学省ナショナルバイオリソースプロジェクトを介して理研BRCから提供された。
著者
冨田 雅典 小林 純也 野村 崇治 松本 義久 内海 博司
出版者
一般社団法人 日本放射線影響学会
雑誌
日本放射線影響学会大会講演要旨集 日本放射線影響学会第54回大会
巻号頁・発行日
pp.43, 2011 (Released:2011-12-20)

線量率効果は、線量率が低くなると、総線量は同じでも、生物効果が低くなる現象であり、長い照射時間の間に亜致死損傷の回復が起こるためであると古くから考えられている。しかしながら、低線量率放射線照射下におけるDNA2重鎖切断(DSB)修復の分子機構は、いまだに十分解明されていない。高等真核生物では、DSBは非相同末端結合(NHEJ)と相同組換え(HR)により修復される。我々は、さまざまなDSB修復遺伝子欠損細胞を用いて、線量率効果におけるDSB修復機構の役割について検討を進めている。NHEJに関与するKU70、HRに関与するRAD54、およびKU70とRAD54をともに欠損したニワトリDT40細胞を用い、γ線連続照射に対する影響を解析した結果、低線量率域でもっとも高い感受性を示した細胞はKU70-/-細胞であった。この要因を広い線量率範囲で解析するために、京都大学放射線生物研究センターの低線量長期放射線照射装置を用いて重点領域研究を開始した。これまでの研究から、0.1 Gy/hのγ線照射下において、RAD54-/-、RAD54-/-KU70-/-細胞と比較して、KU70-/-細胞ではより顕著なG2 arrestが起こり、その後アポトーシスが生じることを明らかにした。今後、線量率を下げて変化を解析する予定である。 また、NHEJに関与するDNA-PKcsを欠損したヒト脳腫瘍細胞を用い、低線量率照射後の細胞生存率を解析した結果、照射開始後ある一定レベルまで低下した後は、照射を継続してもそれ以上変化しないことが明らかになった。この結果は、低線量率放射線の生体影響を考える場合、細胞のターンオーバーが重要な要因となることを示している。 低線量率放射線の組織への影響を考える場合、幹細胞への傷害の蓄積性が問題となる。特にdormantな幹細胞では、NHEJが重要な役割を担うと考えられ、NHEJを欠損したマウスの造血系幹細胞が加齢に伴い枯渇することも報告されている (Nijnik et al. 2007、他)。細胞での結果をもとに、低線量率放射線の生体組織影響におけるDNA修復機構の重要性について議論したい。