著者
立花 章
出版者
一般社団法人 日本放射線影響学会
雑誌
日本放射線影響学会大会講演要旨集 日本放射線影響学会第53回大会
巻号頁・発行日
pp.70, 2010 (Released:2010-12-01)

放射線による生物学的影響を惹起する主要なDNA損傷はDNA二本鎖切断である。従来の放射線生物学的研究は、ガンマ線やX線によるDNA損傷の生成やその修復過程の研究が主であった。これらの研究により、DNA二本鎖切断の感知及び修復に関与する多数のタンパク質の挙動などの検討が詳細に行われ、大きなネットワークを形成するDNA損傷修復過程が明らかにされてきている。しかし、ベータ線によるDNA損傷の生成やその修復については殆ど明らかでない。ベータ線はガンマ線やX線とは飛跡や電離密度が大きく異なるため、DNAなどの生体高分子に生じる損傷の種類や分布にも相違があると考えられる。このような分子レベルでの損傷の違いは、例えばDNA修復タンパク質の挙動に変化をもたらすなど、DNA損傷修復過程にも何らかの相違を生じることが考えられ、それは引いては細胞や個体に対する生物作用にも影響を及ぼすものである。従って、トリチウムベータ線の生物作用を分子および細胞レベルで明らかにすることは極めて重要である。従来のトリチウムによる生物影響研究は、現象論に偏っていたきらいがあるが、近年の分子生物学的知見の蓄積により、ベータ線の生物影響について分子生物学的および細胞生物学的研究の推進が可能になってきた。本発表では、まず、これまでのトリチウム生物影響研究の概要を簡単に振り返り、現状を紹介する。併せて、現在我々が行っているトリチウムチミジンによる放射線適応応答誘導に関する結果を報告したい。
著者
田内 広 井上 昌尚 大原 麻希 須坂 壮 松本 英悟 小松 賢志 立花 章
出版者
一般社団法人 日本放射線影響学会
雑誌
日本放射線影響学会大会講演要旨集 日本放射線影響学会第51回大会
巻号頁・発行日
pp.194, 2008 (Released:2008-10-15)

低線量率・低線量被曝による生物学的影響は、実験的裏付けが少ないために、放射線防護では高線量被曝データの直接的外挿から推定されているのが現状である。また、高LET放射線による体細胞突然変異では逆線量率効果といった特異な現象も報告されており、低線量率放射線被曝の生物影響解明は、科学的根拠に基づく放射線リスク評価のための重要課題でもある。我々は、トリチウムβ線による生物影響が低線量・低線量率でどのようになるのかを実験的に解明するために、体細胞突然変異の高感度検出系を開発し、低線量率のトリチウムβ線照射によるHprt欠損突然変異誘発を解析している。この突然変異高感度検出系は、Hprt遺伝子を欠失したハムスター細胞に正常ヒトX染色体を導入した細胞を用いており、従来の50~100倍の頻度で突然変異が誘発され、0.2GyのX線でも明らかな突然変異頻度上昇を検出できる。本研究ではトリチウム水(HTO)を培養液に添加し、線量率0.13~2.3cGy/hの範囲で0.3Gyの照射を行って突然変異誘発効果を解析した。その結果、中性子で逆線量率効果が認められる0.2cGy/h以下の線量率においても、誘発突然変異頻度の明らかな増加は認められなかったので、トリチウムβ線では、少なくとも0.13cGy/hまでは逆線量率効果は生じないことが示唆された。現在、さらに低い線量・線量率での実験を行っており、その結果を合わせて発表する予定である。また、得られた変異体クローンのヒトX染色体に起こった欠失範囲の解析により、低線量・低線量率では突然変異スペクトルが自然発生のスペクトルに近づくことが示唆された。
著者
笹野 仲史 榎本 敦 細井 義夫 白石 憲史郎 宮川 清 勝村 庸介 中川 恵一
出版者
一般社団法人 日本放射線影響学会
雑誌
日本放射線影響学会大会講演要旨集 日本放射線影響学会第50回大会
巻号頁・発行日
pp.233, 2007 (Released:2007-10-20)

エダラボン(商品名:ラジカット)はフリーラジカルスカベンジャーとして知られており、脳梗塞の治療薬として臨床的に広く使われている薬剤である。今回の我々の実験では、エダラボンの放射線照射後のMOLT-4細胞のアポトーシスに与える影響をin vitroで研究した。アポトーシスについては、色素排除試験、Annexin_V_-PI染色、caspaseの分割により解析した。エダラボンにより、X線照射によるアポトーシスが有意に抑制されることが分かった。細胞内フリーラジカルをCM-H2-DCFDAにより、解析した。細胞内フリーラジカルの産生量は、照射によりほぼ完全に抑制されていることが分かった。p53の蓄積、リン酸化およびp21WAF1の発現は、エダラボンにより抑制されていることが分かった。以上より、フリーラジカルスカベンジャーのエダラボンは、p53経路の抑制を介して、MOLT-4の照射によるアポトーシスを抑制していることが分かった。
著者
熊谷 純 見置 高士 菓子野 元郎 渡邉 正己
出版者
一般社団法人 日本放射線影響学会
雑誌
日本放射線影響学会大会講演要旨集 日本放射線影響学会第54回大会
巻号頁・発行日
pp.26, 2011 (Released:2011-12-20)

ビタミンCの反応性については、G.R. Buettner等が詳しく研究している。L-アスコルビン酸(AscH2)のフラン環の2つのOH基はpKaが4.1と 11.8であるため,弱アルカリ性の生体内では1つのプロトンが解離してL-アスコルビン酸アニオン(AscH–)の形で存在している。脂溶性抗酸化剤として知られるビタミンE(α-トコフェロール)は,酸化脂質を還元する一方で自身は酸化されてα-トコフェロールラジカルとなり、その性質はわずかに酸化剤の性質を持つようになるが,AscH–はα-トコフェロールラジカルを還元してα-トコフェロールへと戻す役割を果たす。その際,AscH–は水素原子(あるいは電子とプロトン)をα-トコフェロールラジカルに渡してアスコルビン酸ラジカルアニオン(Asc・–)となる。Asc・–は不対電子が3つのケトンを含むπ共役系にあるため、その還元力は低く酸素を還元してsuper oxideを生成することはない。さらに、Asc・–は不均化反応でAscH–とフラン環の2つのOH基がジケトンになったDHAとなり、AscH–が回収される。DHAは生体内においてGSHとの酵素反応によってAscH–へと還元される。我々は放射線照射や培地移動放射線バイスタンダー効果によってハムスター細胞内に生成する長寿命ラジカルをESRで直接観測し、ビタミンCを照射後あるいは培地移動時に加えると突然変異を抑制し、長寿命ラジカルの生成も抑えられることを報告してきた。照射された細胞中に生成する長寿命ラジカルは、ビタミンCまたはN-アセチルシステイン(NAC)のどちらでも消去できたが、培地移動バイスタンダー効果によってレシピエント細胞中に生成するそれは、ビタミンCしか消去能がなかった。培地に加えられたビタミンCまたはNACは細胞質に取り込まれる。照射細胞に生成した長寿命ラジカルは細胞質に生成していると推測される。一方、培地移動バイスタンダー効果によってレシピエント細胞に生成する長寿命ラジカルは、ビタミンCを取り込む機能を有する膜タンパク(例えば、ミトコンドリアではDHAを取り込む働きのあるGLUT-1が知られている)をもつ細胞小器官に生成しているものと推測される。本結果は、長寿命ラジカルが関わるバイスタンダー効果の突然変異誘発機構を探る上でも重要な結果である。
著者
西村 義一 武田 志乃 金 煕善
出版者
一般社団法人 日本放射線影響学会
雑誌
日本放射線影響学会大会講演要旨集 日本放射線影響学会第49回大会
巻号頁・発行日
pp.301, 2006 (Released:2007-03-13)

【目的】ラクトフェリン(LF)は「牛乳の赤いタンパク質」として、スウェーデンで発見され、ヒトを含む哺乳類の乳、分泌液、成熟好中球の顆粒などに含まれる分子量約8万のタンパク質で、2~3個のシアル酸からなる糖鎖を持っている。LFは血液中の鉄蛋白であるトランスフェリンと同様、Fe3+を二個分子内にキレートする性質がある。先の学会で LF添加飼料で飼育したマウスにX線を全身すると照射後30日目の生存率はLF給餌群で85%、対象群で62%とLF給餌群で放射線抵抗性が観察された。またLFはヒドキシラジカルに対するラジカルスカベンジャーであり、放射線防護剤としての利用が期待できることを示した。一方、放射線照射後、腹腔内投与することで放射線防護効果のある物質が報告されているが、そのメカニズム等、詳細については明らかにされていない。今回はマウスX線全身照射後のLFの放射線防護効果に関する実験を行い、興味深い知見が得られたので報告する。【方法】8週齢のC3H/Heマウス、52匹に6.8Gy のX線を全身照射した後、半数のマウスにはLF4mg/匹を腹腔内投与した。投与後、マウスには完全精製飼料を与え、30日間の生存率を観察した。また、脾臓細胞のアポトーシスなどについても観察を行った。【結果】C3H/Heマウスに6.8Gy全身照射後、LFを腹腔内投与すると、LF投与群ではほとんど死亡せず、照射後30日目の生存率は92%であったのに対し、対照群では50%であった。また、マウスにX線を全身照射後、1, 2 ,4 hr後にLF腹腔内投与すると、脾臓細胞のアポトーシスと骨髄細胞の損傷を抑制した。一方、腹腔内マクロファージュについては有意な変化は認められなかった。
著者
藤波 直人 古賀 妙子 森嶋 彌重 早田 勇 中村 清一 菅原 努 ZAKERI Farideh
出版者
一般社団法人 日本放射線影響学会
雑誌
日本放射線影響学会大会講演要旨集 日本放射線影響学会第49回大会
巻号頁・発行日
pp.115, 2006 (Released:2007-03-13)

低線量放射線の健康影響調査の一環として、ラムサール高自然放射線地域住民の外部被ばく線量調査を行った。2005年に2回、高自然放射線地域(Talesh Mahalleh)の住民15名と対照地域(Katalom)の住民10名に電子式個人線量計を1日間携帯してもらい、その間の積算線量を調べた。また、NaI(Tl)サーベイメータを用いて屋内外の線量率を測定し、居住係数を用いて積算線量を推定し、実測値との比較・検討を行った。さらに、同じ住民にOSLバッジを約1箇月間携帯してもらい、その間の積算線量を調べた。 2回行った電子式個人線量計から得られた線量には良好な相関が認められ、これらの実測値と屋内外の線量率からの推定値の間にも良い相関が認められた。したがって、電子式線量計によって得られた1日間の積算線量は妥当であると考えられる。 しかし、OSL線量計バッジによる1箇月間の測定から得られた線量には、電子式個人線量計から得られた線量や、屋内外の線量率から推定した線量とは大きく異なる値が認められた。これは、線量計を長期間常に身に付けるのは非常に煩わしく、着替え・脱衣等の際に外され、部屋の片隅に置かれたままになったことが原因と考えられる。Ramsarの高自然放射線地域では、自然放射性核種濃度の高い建材が住居のどの部分に使用されているかで、屋内の線量率は不規則に大きく変化するため、線量計が置かれてしまった場所によって、結果が大きく変動することになる。 したがって、屋内外の線量率の測定と行動パターンの聴き取り調査による推定値で確認を行えば、感度の良い電子式線量計による1日間程度の測定を季節毎に複数回実施する方が、長期間の測定を行うよりも信頼できる個人線量が得られる可能性がある。
著者
田内 広 和久 弘幸 屋良 早香 松本 英悟 岩田 佳之 笠井(江口) 清美 古澤 佳也 小松 賢志 立花 章
出版者
一般社団法人 日本放射線影響学会
雑誌
日本放射線影響学会大会講演要旨集 日本放射線影響学会第53回大会
巻号頁・発行日
pp.79, 2010 (Released:2010-12-01)

高LET放射線に特異な生物現象として、体細胞突然変異や細胞癌化において線量率が非常に低くなると逆に生物影響が大きくなるという逆線量率効果が知られている。この現象は1978年にHillらによって初めて報告されたものであるが、その原因はいまだに明らかになっていない。我々は、マウスL5178Y細胞のHPRT欠損突然変異における核分裂中性子の逆線量率効果が、低線量率照射による細胞周期構成の変化と、G2/M期細胞が中性子誘発突然変異に高感受性であることに起因することを報告し、さらに放医研HIMACの炭素イオンビーム(290 MeV/u)を用いて同様の実験をおこなって、放射線の粒子種ではなくLETそのものがG2/M期細胞の突然変異感受性に大きな影響を与えていることを明らかにした。また、各細胞周期において異なるLETによって誘発された突然変異体のHprt遺伝子座を解析した結果、G2/M期細胞が高LETで照射された時に大きな欠失が増加することがわかり、G2/M期被ばくではDNA損傷修復機構がLETによって変化していることが示唆された。さらに、正常ヒトX染色体を移入したHPRT欠損ハムスター細胞を用いた突然変異の高感度検出系を開発し、総線量を減らすことによってHIMACのような限られたマシンタイムでの低線量率照射実験を可能にした。実際、この系を用いてLET 13.3 KeV/μmと66 KeV/μmの炭素イオンビーム(290 MeV/u)で突然変異の線量率依存性を比較した結果、66 KeV/μmで明らかな逆線量率効果が認められたのに対して13.3 KeV/μmでは逆線量率効果は認められなかった。これらのことから、高LET放射線による逆線量率効果は低線量照射による細胞周期の部分同調とG2/M期における高LET放射線損傷に対する修復機構の変化に起因していると考えられる。
著者
冨田 雅典 小林 純也 野村 崇治 松本 義久 内海 博司
出版者
一般社団法人 日本放射線影響学会
雑誌
日本放射線影響学会大会講演要旨集 日本放射線影響学会第54回大会
巻号頁・発行日
pp.43, 2011 (Released:2011-12-20)

線量率効果は、線量率が低くなると、総線量は同じでも、生物効果が低くなる現象であり、長い照射時間の間に亜致死損傷の回復が起こるためであると古くから考えられている。しかしながら、低線量率放射線照射下におけるDNA2重鎖切断(DSB)修復の分子機構は、いまだに十分解明されていない。高等真核生物では、DSBは非相同末端結合(NHEJ)と相同組換え(HR)により修復される。我々は、さまざまなDSB修復遺伝子欠損細胞を用いて、線量率効果におけるDSB修復機構の役割について検討を進めている。NHEJに関与するKU70、HRに関与するRAD54、およびKU70とRAD54をともに欠損したニワトリDT40細胞を用い、γ線連続照射に対する影響を解析した結果、低線量率域でもっとも高い感受性を示した細胞はKU70-/-細胞であった。この要因を広い線量率範囲で解析するために、京都大学放射線生物研究センターの低線量長期放射線照射装置を用いて重点領域研究を開始した。これまでの研究から、0.1 Gy/hのγ線照射下において、RAD54-/-、RAD54-/-KU70-/-細胞と比較して、KU70-/-細胞ではより顕著なG2 arrestが起こり、その後アポトーシスが生じることを明らかにした。今後、線量率を下げて変化を解析する予定である。 また、NHEJに関与するDNA-PKcsを欠損したヒト脳腫瘍細胞を用い、低線量率照射後の細胞生存率を解析した結果、照射開始後ある一定レベルまで低下した後は、照射を継続してもそれ以上変化しないことが明らかになった。この結果は、低線量率放射線の生体影響を考える場合、細胞のターンオーバーが重要な要因となることを示している。 低線量率放射線の組織への影響を考える場合、幹細胞への傷害の蓄積性が問題となる。特にdormantな幹細胞では、NHEJが重要な役割を担うと考えられ、NHEJを欠損したマウスの造血系幹細胞が加齢に伴い枯渇することも報告されている (Nijnik et al. 2007、他)。細胞での結果をもとに、低線量率放射線の生体組織影響におけるDNA修復機構の重要性について議論したい。