著者
水野 忠快 根本 駿平 森田 勝久 楠原 洋之
出版者
公益社団法人 日本薬学会
雑誌
YAKUGAKU ZASSHI (ISSN:00316903)
巻号頁・発行日
vol.143, no.2, pp.127-132, 2023-02-01 (Released:2023-02-01)
参考文献数
8

The effects of drugs and other low-molecular-weight compounds are complex and may be unintended by the developer. These compounds and drugs should be avoided if these unintended effects are harmful; however, unintended effects are not always as harmful as suggested by drug repositioning. Therefore, a comprehensive understanding of complex drug actions is essential. Omics data can be regarded as the nonarbitrary transformation of biological information about a sample into comprehensive numerical information comprising multivariate data with a large number of variables. However, the changes are often based on a small number of elements in different dimensions (i.e., latent variables). The omics data of compound-treated samples comprehensively capture the complex effects of compounds, including their unrecognized aspects. Therefore, finding latent variables in these data is expected to contribute to the understanding of multiple effects. In particular, it can be interpreted as decomposing multiple effects into a smaller number of easily understandable effects. Although latent variable models of omics data have been used to understand the mechanisms of diseases, no approach has considered the multiple effects of compounds and their decomposition. Therefore, we propose to decompose and understand the multiple effects of low-molecular-weight compounds without arbitrariness and have been developing analytical methods and verifying their usefulness. In particular, we focused on classical factor analysis among latent variable models and have been examining the biological validity of the estimates obtained under linear assumptions.