著者
戸野塚 久紘 菅谷 啓之 高橋 憲正 河合 伸昭 中島 亮 寺谷 威 真鍋 博規 安藤 晃 森石 丈二
出版者
日本肩関節学会
雑誌
肩関節 (ISSN:09104461)
巻号頁・発行日
vol.35, no.3, pp.877-881, 2011 (Released:2011-12-21)
参考文献数
13
被引用文献数
1

The purpose of this study is to determine a target ROM (T-ROM) at 3 months after arthroscopic rotator cuff repair, by which patients can expect eventual full recovery. Subjects consist of 209 shoulders in 202 patients, including 116 males and 86 females with an average age of 61.5 years old, who underwent primary arthroscopic rotator cuff repair and were followed-up for a minimum of 2 years. There were 30 partial-thickness tears, 120 small to medium and 57 large to massive full-thickness tears. Anterior elevation (AE), external rotation at side (ER), and internal rotation (IR) ROM at 3 month after surgery (ROM-3M) were measured, and divided into five groups according to the values. The final ROM at 24 months after surgery was compared with each ROM-3M of these subgroups in order to determine the T-ROM. Then, according to the T-ROM, patients were also divided into two groups: less than the T-ROM (AE-, ER-, and IR-); and more than the T-ROM (AE+, ER+, and IR+), and average ROM in each group were compared with each other. The final ROM of AE was significantly better in the group of more than 120° than less than 120 degrees. Therefore, the T-ROM of AE was determined as 120°. Similarly, those of ER and IR were determined as 10° and L5 level. ROM at 6 and 9 months in the AE+ group was significantly better than those of the AE- group. Further, every ROM at 3 to 24 months in the ER+ group was significantly better than those of the ER- group. In conclusion, ROM at 3 months after surgery affects final shoulder function. Surgeons and therapists should pay attention to the T-ROM at 3 months after surgery described above in order to maximize patients's final shoulder function.
著者
河合 伸昭 菅谷 啓之 高橋 憲正 戸野塚 久紘 中島 亮 寺谷 威 真鍋 博規 安藤 晃 森石 丈二
出版者
日本肩関節学会
雑誌
肩関節 (ISSN:09104461)
巻号頁・発行日
vol.35, no.3, pp.903-906, 2011 (Released:2011-12-21)
参考文献数
14
被引用文献数
2

Primary frozen shoulder is believed to be a self-limited disease. However, many patients complain of prolonged symptoms such as night pain and refractory stiffness. The purpose of this study is to estimate the efficacy of steroid injection to the glenohumeral joint for primary stiff shoulder associated with night pain. Subjects consisted of 115 consecutive patients, including 37 males and 72 females with an average age of 59.4 years old, who were diagnosed as having primary frozen shoulder at the shoulder clinic in our institute from May to November, 2009. Our treatment principles are as follows: we recommend patients who complain of night pain to keep their arm at rest and carry out trunk and scapular exercises, in addition to steroid injection to the glenohumeral joint once a week until the night pain subsides. Then, physiotherapy is initiated of the hand of therapists. Range of motion at the first visit and at the time when the night pain disappeared was evaluated, as well as that at the final follow-up which was 5.8 months on average.The mean forward flexion, external and internal rotation significantly improved when the night pain disappeared, which was 4.8 weeks on average, from 97.5, 9.2°, and S level to 117.5, 17.4°, and L4 level. The range of motion at the final follow-up was 144 degrees in flexion, 31 in external rotation, and L2 level in internal rotation.Steroid injection to the glenohumeral joint was effective for pain relief for patients with primary frozen shoulder associated with night pain. Removing inflammation at the glenohumeral joint is a key factor when treating such patients and this also enables patients to proceed with effective physiotherapy.
著者
河合 伸昭
出版者
岡山市立岡山後楽館高等学校
雑誌
奨励研究
巻号頁・発行日
2007

研究のねらい現在の高校生に対し、数学の学力養成は重要な課題である。ここでは、特に生徒が理解に困難を感じるベクトルについて幾何ソフトを用いた教材の開発を試みた。研究方法概念の発達をたどり、自然にベクトルを理解できるようにベクトル・微分的考えが自然的な現象の解明に鮮やかに用いられた歴史的なニュートンの「プリンキピア」、そしてそれを初等的な幾何を用いて解説したファインマンの「Lost Lecture」をもとに、幾何ソフトを活用した教材を作成した。それを、本校の数学倶楽部、市民講座の受講生の方に講義し、内容を改善を図った。研究の内容・成果まず、ベクトルの合成・分解、運動の記述の前提である慣性の法則の直感的理解のため、ガリレイの放物運動の研究を出発点とした。ガリレイは、慣性の法則をはっきりとうち立て、速度がベクトルとして合成・分解できるということを示した。これを幾何ソフトで視覚的に示した。ここから、ケプラーの三法則から万有引力め法則・惑星の運行の解明の過程をたどり、ベクトル的考え方・運動の解析における微分的考え方の有用性が実感できるよう構成を考えた。「面積速度一定の法則」は慣性の法則と三角形の等積変形・「運動の第二法則」とベクトルの合成から導ける。ベクトルや力学は高校生にとって理解するのが難しいのであるがこ幾何ソフトを用いることで、理解が容易になったようである。さらに、速度の変化をベクトルの差で表し、「ケプラーの第三法則」から引力が距離の二乗に反比例すること(万有引力の性質)も示すことができ、これもまたベクトル概念・微分的な考え方の正当性の「demonstration」となっており、生徒の理解を強力に後押ししたようである。最後の、万有引力による惑星の軌道が太陽を焦点とする楕円軌道を描くことは、まだ生徒に授業実践できていないが、日本数学教育学会全国大会では、発表予定である。