著者
吉田 舜 北園 淳 小澤 誠一 菅原 貴弘 芳賀 達也
出版者
一般社団法人 電気学会
雑誌
電気学会論文誌. C (ISSN:03854221)
巻号頁・発行日
vol.136, no.3, pp.340-347, 2016
被引用文献数
3

In recent years, along with the popularization of SNS, the incidents, which are called flaming, that the number of negative comments surges are on the increase. This becomes a problem for companies because flamings hurt companies reputation. In order to minimalize the damage of reputation, we propose the method that detects flamings by estimating the sentiment polarities of SNS comments. Because of the unique SNS characteristics such as repetition of same comments, the polarities of words are sometimes wrongly estimated. To alleviate this problem, transfer learning is introduced. In this research, the sentiment polarities of words are trained in every domain. This will enable to extract the words that are domain-specific and dictate the polarity of comments. These words are occurred in retweets. Transfer learning is implemented to non-extracted words by averaging the occurrence probabilities in other domains. These processes keep the polarities of important words that dictate the polarity of comments and modify the wrongly estimated polarities of words. The experimental results show that the proposed method improves the performance of estimating the sentiment polarity of comments. Moreover, flamings can be detected without missing by monitoring time course of the number of negative comments.
著者
藤井 信忠 高井 剛 貝原 俊也 菅原 貴弘
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集
巻号頁・発行日
vol.2015, pp.2G5OS25b6, 2015

<p>SNSの普及により,SNS上での情報伝播の速さに起因して誹謗中傷などが急激に拡散し,いわゆる炎上発生が散見される.企業活動においてもそれらは無視できず,ネガティブ情報の流布が企業イメージを毀損することにも繋がりかねない.本研究では,過去の炎上事例を分析するとともに,エージェントベースシミュレーションによりネガティブ情報拡散防止方策について検討する.</p>