著者
半那 純一 飯野 裕明
出版者
東京工業大学
雑誌
特定領域研究
巻号頁・発行日
2007

棒状液晶物質をモデルとして、ポリアニリンによるドーピングによる電子伝導、及び、イオン液体によるいイオン伝導のバルクキャリア濃度の制御、及び、それを利用した液晶物質を半導体層とするTFT特性の改善について検討した。ポリアニリンを所定量ドープした8-TTP-8の低電界下での電流特性は、その濃度に依存して増加し、増大し、最大4桁(1wt%時)増大が見られた。一方、ポリアニリンのHOMO準位よりもホールに対してエネルギー的に高いHOMO準位を持つNaphthalene系液晶8-PNP-012ではこの現象は観測できなかった。さらに、ドープされた試料のtime-of-flight法による過渡光電流の測定から、濃度によらず移動度は未ドープの試料と変わらないことから、ポリアニリンは液晶中では液晶分子が形成するスメクティック層の層間に存在しているものと考えられた。8-TTP-8の多結晶薄膜を有機半導体層として作製したボトムゲートFETの素子特性は未ドープのFETの特性に比べ、on電流、及び、ゲート電圧に対する電流の立ち上がりの改善が見られ、移動度は約2倍の0.2cm^2/Vsまで改善された。イオン液体によってドープした8-TTP-8の液晶相ではイオン液体の種類による伝導度の違いはあるものの、いずれの場合も濃度に依存して伝導度の上昇が観測され、結晶相では高濃度ドープした試料を除いてその濃度に係わらず、未ドープ試料の示す伝導度との違いが見られなかった。この特性は、8-PNP-012の場合も基本的に同じ結果を与えた。これらの結果は、ドープされたイオン液体が液晶物質の中で解離し、イオンとして伝導に寄与していることを示している。イオン液体の種類による伝導度の違いは液晶物質中におけるイオン液体の解離の違いによると考えられた。
著者
飯野 裕明
出版者
東京工業大学
雑誌
若手研究(スタートアップ)
巻号頁・発行日
2006

平成19年度は(1)加熱スピンコートによる多結晶薄膜作製の詳細な検討(2)平成18年度に検討した棒状液晶系(チオフェン系)、円盤状液晶(フタロシアニン系)の多結晶薄膜を用いた有機トランジスタの作製および評価(3)新規な液晶材料(チオフェン、ペリレン系)の多結晶薄膜の電荷輸送評価および有機トランジスタの作製および評価を行った。(1)液晶相を示す温度における加熱スピンコートを行った際のみ、均一な薄膜作製が可能であった。従って、液晶相においてスピンコートをすることが均一な薄膜作製には重要であることが示唆された。(2)棒状液晶においては良好なトランジスタ特性を示し、移動度(>10^<-2>cm^2/Vs)が過渡光電流測定法で求まる移動度(粒界の影響を受けていない移動度)と一致したのに対し、円盤状液晶においては良好なトランジスタ特性は示さなかった(移動度<10^<-5>cm^2/Vs)。これは配向制御が容易な棒状液晶においては粒界方向を制御でき粒界の影響を受けない電荷輸送特性になったのに対し、円盤状液晶は分子配向制御ができず、粒界の影響を強く受けたためと示唆された。(3)過渡光電流測定法により高移動度(>0.1cm^2/Vs)を示すターチオフェン液晶、およびペリレン液晶を上記と同様な方法でトランジスタを作製したところ、それぞれ、pチャネル、nチャネルで動作し、移動度が0.1cm^2/Vsを超えることを見出した。このように液晶性物質の多結晶薄膜は、(1)液晶相を用いることで通常では困難なウエットプロセスによる均一な多結晶薄膜の作製が可能、(2)液晶相を経由することで分子配向制御させた多結晶薄膜作製が可能、(3)粒界方向を制御でき電荷輸送方向には粒界の影響が少ない、といった特徴を有することが明らかになった。その結果、通常の多結晶材料の真空蒸着法で示されるような高移動度(>0.1cm^2/Vs)を示すpチャネル、nチャネルのトランジスタをウエットプロセスで実現させることに成功した。