著者
Eizo NAKAMURA Katsura KOBAYASHI Ryoji TANAKA Tak KUNIHIRO Hiroshi KITAGAWA Christian POTISZIL Tsutomu OTA Chie SAKAGUCHI Masahiro YAMANAKA Dilan M. RATNAYAKE Havishk TRIPATHI Rahul KUMAR Maya-Liliana AVRAMESCU Hidehisa TSUCHIDA Yusuke YACHI Hitoshi MIURA Masanao ABE Ryota FUKAI Shizuho FURUYA Kentaro HATAKEDA Tasuku HAYASHI Yuya HITOMI Kazuya KUMAGAI Akiko MIYAZAKI Aiko NAKATO Masahiro NISHIMURA Tatsuaki OKADA Hiromichi SOEJIMA Seiji SUGITA Ayako SUZUKI Tomohiro USUI Toru YADA Daiki YAMAMOTO Kasumi YOGATA Miwa YOSHITAKE Masahiko ARAKAWA Atsushi FUJII Masahiko HAYAKAWA Naoyuki HIRATA Naru HIRATA Rie HONDA Chikatoshi HONDA Satoshi HOSODA Yu-ichi IIJIMA Hitoshi IKEDA Masateru ISHIGURO Yoshiaki ISHIHARA Takahiro IWATA Kosuke KAWAHARA Shota KIKUCHI Kohei KITAZATO Koji MATSUMOTO Moe MATSUOKA Tatsuhiro MICHIKAMI Yuya MIMASU Akira MIURA Tomokatsu MOROTA Satoru NAKAZAWA Noriyuki NAMIKI Hirotomo NODA Rina NOGUCHI Naoko OGAWA Kazunori OGAWA Chisato OKAMOTO Go ONO Masanobu OZAKI Takanao SAIKI Naoya SAKATANI Hirotaka SAWADA Hiroki SENSHU Yuri SHIMAKI Kei SHIRAI Yuto TAKEI Hiroshi TAKEUCHI Satoshi TANAKA Eri TATSUMI Fuyuto TERUI Ryudo TSUKIZAKI Koji WADA Manabu YAMADA Tetsuya YAMADA Yukio YAMAMOTO Hajime YANO Yasuhiro YOKOTA Keisuke YOSHIHARA Makoto YOSHIKAWA Kent YOSHIKAWA Masaki FUJIMOTO Sei-ichiro WATANABE Yuichi TSUDA
出版者
The Japan Academy
雑誌
Proceedings of the Japan Academy, Series B (ISSN:03862208)
巻号頁・発行日
vol.98, no.6, pp.227-282, 2022-06-10 (Released:2022-06-10)
参考文献数
245
被引用文献数
90

Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation.
著者
Eizo NAKAMURA Akio MAKISHIMA Kyoko HAGINO Kazunori OKABE
出版者
The Japan Academy
雑誌
Proceedings of the Japan Academy, Series B (ISSN:03862208)
巻号頁・発行日
vol.85, no.7, pp.229-239, 2009 (Released:2009-07-31)
参考文献数
58
被引用文献数
14 22

While exposure to fibers and particles has been proposed to be associated with several different lung malignancies including mesothelioma, the mechanism for the carcinogenesis is not fully understood. Along with mineralogical observation, we have analyzed forty-four major and trace elements in extracted asbestos bodies (fibers and proteins attached to them) with coexisting fiber-free ferruginous protein bodies from extirpative lungs of individuals with malignant mesothelioma. These observations together with patients’ characteristics suggest that inhaled iron-rich asbestos fibers and dust particles, and excess iron deposited by continuous cigarette smoking would induce ferruginous protein body formation resulting in ferritin aggregates in lung tissue. Chemical analysis of ferruginous protein bodies extracted from lung tissues reveals anomalously high concentrations of radioactive radium, reaching millions of times higher concentration than that of seawater. Continuous and prolonged internal exposure to hotspot ionizing radiation from radium and its daughter nuclides could cause strong and frequent DNA damage in lung tissue, initiate different types of tumour cells, including malignant mesothelioma cells, and may cause cancers.(Communicated by Takashi SUGIMURA, M.J.A.)