Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation.
Hayabusa2 arrived at the asteroid Ryugu in June 2018, and as of April 2019, the mission succeeded in conducting two rovers landing, one lander landing, one spacecraft touchdown/sample collection and one kinetic impact operation. This paper describes the initial nine months of the asteroid proximity operation activity of the Hayabusa2 mission, and gives an overview of the achievements thus far. Some important engineering and scientific activities conducted synchronously with spacecraft operations in order to complete all planned operations in time against unexpectedly harsh environment of Ryugu are also described.
In this paper, the estimation method of impact probability for Near-Earth Objects (NEOs) is investigated. The impact probability of NEOs has been calculated by a linear target plane analysis and a Monte-Carlo method. Since the collisions of NEOs with the Earth are quite sensitive problems, the calculations have to be confirmed by everal methods. A linear target plane analysis cannot be applied if the position uncertainty is too large since the uncertainty ellipsoid is not a good assumption in this case. A Monte-Carlo method can be used for a large position uncertainty, but the computational cost is high. The limitation of using a linear target plane analysis is investigated using the Monte-Carlo method for the close approach of 99942 Apophis (2004 MN4). The relation between impact probability and observation accuracy is investigated by analyzing the close approach of 2007WD5.