著者
Takashi Okubo Takahiro Tsukui Hiroko Maita Shinobu Okamoto Kenshiro Oshima Takatomo Fujisawa Akihiro Saito Hiroyuki Futamata Reiko Hattori Yumi Shimomura Shin Haruta Sho Morimoto Yong Wang Yoriko Sakai Masahira Hattori Shin-ichi Aizawa Kenji V. P. Nagashima Sachiko Masuda Tsutomu Hattori Akifumi Yamashita Zhihua Bao Masahito Hayatsu Hiromi Kajiya-Kanegae Ikuo Yoshinaga Kazunori Sakamoto Koki Toyota Mitsuteru Nakao Mitsuyo Kohara Mizue Anda Rieko Niwa Park Jung-Hwan Reiko Sameshima-Saito Shin-ichi Tokuda Sumiko Yamamoto Syuji Yamamoto Tadashi Yokoyama Tomoko Akutsu Yasukazu Nakamura Yuka Nakahira-Yanaka Yuko Takada Hoshino Hideki Hirakawa Hisayuki Mitsui Kimihiro Terasawa Manabu Itakura Shusei Sato Wakako Ikeda-Ohtsubo Natsuko Sakakura Eli Kaminuma Kiwamu Minamisawa
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
pp.1203230372, (Released:2012-03-28)
参考文献数
1
被引用文献数
37 53

Bradyrhizobium sp. S23321 is an oligotrophic bacterium isolated from paddy field soil. Although S23321 is phylogenetically close to Bradyrhizobium japonicum USDA110, a legume symbiont, it is unable to induce root nodules in siratro, a legume often used for testing Nod factor-dependent nodulation. The genome of S23321 is a single circular chromosome, 7,231,841 bp in length, with an average GC content of 64.3%. The genome contains 6,898 potential protein-encoding genes, one set of rRNA genes, and 45 tRNA genes. Comparison of the genome structure between S23321 and USDA110 showed strong colinearity; however, the symbiosis islands present in USDA110 were absent in S23321, whose genome lacked a chaperonin gene cluster (groELS3) for symbiosis regulation found in USDA110. A comparison of sequences around the tRNA-Val gene strongly suggested that S23321 contains an ancestral-type genome that precedes the acquisition of a symbiosis island by horizontal gene transfer. Although S23321 contains a nif (nitrogen fixation) gene cluster, the organization, homology, and phylogeny of the genes in this cluster were more similar to those of photosynthetic bradyrhizobia ORS278 and BTAi1 than to those on the symbiosis island of USDA110. In addition, we found genes encoding a complete photosynthetic system, many ABC transporters for amino acids and oligopeptides, two types (polar and lateral) of flagella, multiple respiratory chains, and a system for lignin monomer catabolism in the S23321 genome. These features suggest that S23321 is able to adapt to a wide range of environments, probably including low-nutrient conditions, with multiple survival strategies in soil and rhizosphere.
著者
Ikuko Kusaba Takahiro Nakao Hiroko Maita Shusei Sato Ryota Chijiiwa Emi Yamada Susumu Arima Mareshige Kojoma Kanji Ishimaru Ryo Akashi Akihiro Suzuki
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.57-66, 2021-03-25 (Released:2021-03-25)
参考文献数
35
被引用文献数
3

Licorice (Glycyrrhiza uralensis) is a medicinal plant that contains glycyrrhizin (GL), which has various pharmacological activities. Because licorice is a legume, it can establish a symbiotic relationship with nitrogen-fixing rhizobial bacteria. However, the effect of this symbiosis on GL production is unknown. Rhizobia were isolated from root nodules of Glycyrrhiza glabra, and a rhizobium that can form root nodules in G. uralensis was selected. Whole-genome analysis revealed a single circular chromosome of 6.7 Mbp. This rhizobium was classified as Mesorhizobium by phylogenetic analysis and was designated Mesorhizobium sp. J8. When G. uralensis plants grown from cuttings were inoculated with J8, root nodules formed. Shoot biomass and SPAD values of inoculated plants were significantly higher than those of uninoculated controls, and the GL content of the roots was 3.2 times that of controls. Because uninoculated plants from cuttings showed slight nodule formation, we grew plants from seeds in plant boxes filled with sterilized vermiculite, inoculated half of the seedlings with J8, and grew them with or without 100 µM KNO3. The SPAD values of inoculated plants were significantly higher than those of uninoculated plants. Furthermore, the expression level of the CYP88D6 gene, which is a marker of GL synthesis, was 2.5 times higher than in inoculated plants. These results indicate that rhizobial symbiosis promotes both biomass and GL production in G. uralensis.